402 research outputs found

    Breaking the electroweak symmetry and supersymmetry by a compact extra dimension

    Full text link
    We revisit in some more detail a recent specific proposal for the breaking of the electroweak symmetry and of supersymmetry by a compact extra dimension. Possible mass terms for the Higgs and the matter hypermultiplets are considered and their effects on the spectrum analyzed. Previous conclusions are reinforced and put on firmer ground.Comment: 25 pages, LaTeX, 9 eps figure

    Fine tuning as an indication of physics beyond the MSSM

    Full text link
    We investigate the amount of fine tuning of the electroweak scale in the presence of new physics beyond the MSSM, parametrized by higher dimensional operators. We show that these significantly reduce the MSSM fine tuning to Delta<10 for a Higgs mass between the LEPII bound and 130 GeV, and a corresponding scale M_* of new physics as high as 30 to 65 times the Higgsino mass. If the fine-tuning criterion is indeed of physical relevance, the findings indicate the presence of new physics in the form of new states of mass of O(M_*) that generated the effective operators in the first instance. At small tan⁥ÎČ\tan\beta these states can be a gauge singlet or a SU(2) triplet. We derive analytical results for the EW scale fine-tuning for the MSSM with higher dimensional operators, including the quantum corrections which are also applicable to the pure MSSM case in the limit the coefficients of the higher dimension operators vanish. A general expression for the fine-tuning is also obtained for an arbitrary two-Higgs doublet potential.Comment: 27 pages, 6 Figures; Eqs.(15)-(18) and (A.2)-(A.5) simplified; figures 1-3 update

    Testing SUSY

    Full text link
    If SUSY provides a solution to the hierarchy problem then supersymmetric states should not be too heavy. This requirement is quantified by a fine tuning measure that provides a quantitative test of SUSY as a solution to the hierarchy problem. The measure is useful in correlating the impact of the various experimental measurements relevant to the search for supersymmetry and also in identifying the most sensitive measurements for testing SUSY. In this paper we apply the measure to the CMSSM, computing it to two-loop order and taking account of current experimental limits and the constraint on dark matter abundance. Using this we determine the present limits on the CMSSM parameter space and identify the measurements at the LHC that are most significant in covering the remaining parameter space. Without imposing the LEP Higgs mass bound we show that the smallest fine tuning (1:13) consistent with a relic density within the WMAP bound corresponds to a Higgs mass of 114±\pm2 GeV. Fine tuning rises rapidly for heavier Higgs.Comment: 12 pages, 7 figures; references added, figures updated for extended parameter space sca

    Radiative Corrections to Neutralino and Chargino Masses in the Minimal Supersymmetric Model

    Full text link
    We determine the neutralino and chargino masses in the MSSM at one-loop. We perform a Feynman diagram calculation in the on-shell renormalization scheme, including quark/squark and lepton/slepton loops. We find generically the corrections are of order 6%. For a 20 GeV neutralino the corrections can be larger than 20%. The corrections change the region of ÎŒ, M2, tan⁥ÎČ\mu,\ M_2,\ \tan\beta parameter space which is ruled out by LEP data. We demonstrate that, e.g., for a given ÎŒ\mu and tan⁥ÎČ\tan\beta the lower limit on the parameter M2M_2 can shift by 20 GeV.Comment: 11 pages, JHU-TIPAC-930030, PURD-TH-93-13, uses epsf.sty, 6 uuencoded postscript figures, added one sentence and a referenc

    Testing SUSY at the LHC: Electroweak and Dark matter fine tuning at two-loop order

    Get PDF
    In the framework of the Constrained Minimal Supersymmetric Standard Model (CMSSM) we evaluate the electroweak fine tuning measure that provides a quantitative test of supersymmetry as a solution to the hierarchy problem. Taking account of current experimental constraints we compute the fine tuning at two-loop order and determine the limits on the CMSSM parameter space and the measurements at the LHC most relevant in covering it. Without imposing the LEPII bound on the Higgs mass, it is shown that the fine tuning computed at two-loop has a minimum Δ=8.8\Delta=8.8 corresponding to a Higgs mass mh=114±2m_h=114\pm 2 GeV. Adding the constraint that the SUSY dark matter relic density should be within present bounds we find Δ=15\Delta=15 corresponding to mh=114.7±2m_h=114.7\pm 2 GeV and this rises to Δ=17.8\Delta=17.8 (mh=115.9±2m_h=115.9\pm 2 GeV) for SUSY dark matter abundance within 3σ\sigma of the WMAP constraint. We extend the analysis to include the contribution of dark matter fine tuning. In this case the overall fine tuning and Higgs mass are only marginally larger for the case SUSY dark matter is subdominant and rises to Δ=28.7\Delta=28.7 (mh=116.98±2m_h=116.98\pm 2 GeV) for the case of SUSY dark matter saturates the WMAP bound. For a Higgs mass above these values, fine tuning rises exponentially fast. The CMSSM spectrum that corresponds to minimal fine tuning is computed and provides a benchmark for future searches. It is characterised by heavy squarks and sleptons and light neutralinos, charginos and gluinos.Comment: 36 pages, 24 figure

    The fine-tuning cost of the likelihood in SUSY models

    Full text link
    In SUSY models, the fine tuning of the electroweak (EW) scale with respect to their parameters gamma_i={m_0, m_{1/2}, mu_0, A_0, B_0,...} and the maximal likelihood L to fit the experimental data are usually regarded as two different problems. We show that, if one regards the EW minimum conditions as constraints that fix the EW scale, this commonly held view is not correct and that the likelihood contains all the information about fine-tuning. In this case we show that the corrected likelihood is equal to the ratio L/Delta of the usual likelihood L and the traditional fine tuning measure Delta of the EW scale. A similar result is obtained for the integrated likelihood over the set {gamma_i}, that can be written as a surface integral of the ratio L/Delta, with the surface in gamma_i space determined by the EW minimum constraints. As a result, a large likelihood actually demands a large ratio L/Delta or equivalently, a small chi^2_{new}=chi^2_{old}+2*ln(Delta). This shows the fine-tuning cost to the likelihood (chi^2_{new}) of the EW scale stability enforced by SUSY, that is ignored in data fits. A good chi^2_{new}/d.o.f.\approx 1 thus demands SUSY models have a fine tuning amount Delta<<exp(d.o.f./2), which provides a model-independent criterion for acceptable fine-tuning. If this criterion is not met, one can thus rule out SUSY models without a further chi^2/d.o.f. analysis. Numerical methods to fit the data can easily be adapted to account for this effect.Comment: 10 pages (v3: small comment added

    Deconstructing Non-Abelian Gauge Theories at One Loop

    Full text link
    Deconstruction of 5D Yang-Mills gauge theories is studied in next-to-leading order accuracy. We calculate one-loop corrections to the mass spectrum of the non-linear gauged sigma-model, which is the low energy effective theory of the deconstructed theory. Renormalization is carried out following the standard procedure of effective field theories. The relation between the radius of the compactified fifth dimension and the symmetry breaking scale of the non-linear sigma-model is modified by radiative corrections. We demonstrate that one can match the low lying spectrum of the gauge boson masses of the effective 4D gauged non-linear sigma-model to the Kaluza-Klein modes of the 5D theory at one-loop accuracy

    Anomalies, Fayet-Iliopoulos terms and the consistency of orbifold field theories

    Get PDF
    We study the consistency of orbifold field theories and clarify to what extent the condition of having an anomaly-free spectrum of zero-modes is sufficient to guarantee it. Preservation of gauge invariance at the quantum level is possible, although at the price, in general, of introducing operators that break the 5d local parity. These operators are, however, perfectly consistent with the orbifold projection. We also clarify the relation between localized Fayet-Iliopoulos (FI) terms and anomalies. These terms can be consistently added, breaking neither local supersymmetry nor the gauge symmetry. In the framework of supergravity the localized FI term arises as the boundary completion of a bulk interaction term: given the bulk Lagrangian the FI is fixed by gauge invariance.Comment: 31 pages, 1 figure. v2: some typos corrected, references adde

    Precise Prediction for M_W in the MSSM

    Full text link
    We present the currently most accurate evaluation of the W boson mass, M_W, in the Minimal Supersymmetric Standard Model (MSSM). The full complex phase dependence at the one-loop level, all available MSSM two-loop corrections as well as the full Standard Model result have been included. We analyse the impact of the different sectors of the MSSM at the one-loop level with a particular emphasis on the effect of the complex phases. We discuss the prediction for M_W based on all known higher-order contributions in representative MSSM scenarios. Furthermore we obtain an estimate of the remaining theoretical uncertainty from unknown higher-order corrections.Comment: 38 pages, 25 figures. Minor corrections, additional reference

    Beyond the MSSM Higgs with d=6 effective operators

    Full text link
    We continue a previous study of the MSSM Higgs Lagrangian extended by all effective operators of dimension d=6 that can be present beyond the MSSM, consistent with its symmetries. By supersymmetry, such operators also extend the neutralino and chargino sectors, and the corresponding component fields Lagrangian is computed onshell. The corrections to the neutralino and chargino masses, due to these operators, are computed analytically in function of the MSSM corresponding values. For individual operators, the corrections are small, of few GeV for the constrained MSSM (CMSSM) viable parameter space. We investigate the correction to the lightest Higgs mass, which receives, from individual operators, a supersymmetric correction of up to 4 (6) GeV above the 2-loop leading-log CMSSM value, from those CMSSM phase space points with: EW fine tuning Delta<200, consistent with WMAP relic density (3σ\sigma), and for a scale of the operators of M=10 (8) TeV, respectively. Applied to the CMSSM point of minimal fine tuning (Delta=18), such increase gives an upper limit mh=120(122)±2m_h=120(122)\pm 2 GeV, respectively. The increase of m_h from individual operators can be larger (∌\sim 10-30 GeV) for those CMSSM phase space points with Delta>200; these can now be phenomenologically viable, with reduced Delta, and this includes those points that would have otherwise violated the LEP2 bound by this value. The neutralino/chargino Lagrangian extended by the effective operators can be used in studies of dark matter relic density within extensions of the MSSM, by implementing it in public codes like micrOMEGAs.Comment: 36 pages, Latex, 16 figures (v2: minor changes, corrected typos
    • 

    corecore