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Abstract

We study the consistency of orbifold field theories and clarify to what extent the condition of

having an anomaly-free spectrum of zero-modes is sufficient to guarantee it. Preservation of gauge

invariance at the quantum level is possible, although at the price, in general, of introducing op-

erators that break the 5d local parity. These operators are, however, perfectly consistent with

the orbifold projection. We also clarify the relation between localized Fayet-Iliopoulos (FI) terms

and anomalies. These terms can be consistently added, breaking neither local supersymmetry nor

the gauge symmetry. In the framework of supergravity the localized FI term arises as the bound-

ary completion of a bulk interaction term: given the bulk Lagrangian the FI is fixed by gauge

invariance.
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1 Introduction

The existence of extra compact dimensions has been recognized since a long time to be
a quite natural and appealing possibility, subject to rather mild constraints from present
day experiments. String theory, which is the only consistent candidate available at present
for a microscopic and unified description of fundamental interactions, requires in fact at
least six of them; a fact that suggests that they might play some important role also from
an effective field theory point of view.

Recently, renewed attention has been devoted to orbifold field theories with Scherk-
Schwarz (SS) symmetry breaking [1]. Starting from five-dimensional (5d) supersymmetric
theories, for instance, it has been possible to construct very simple and interesting exten-
sions of the standard model with SS supersymmetry breaking [2, 3], as well as grand-unified
theories with SS gauge symmetry breaking [4]. Being non-renormalizable, these models
must be thought of as effective field theories valid up to some physical cut-off scale Λ. Un-
calculable UV effects can then be parameterized by writing the most general Lagrangian
containing operators of arbitrarily high dimensions and with coefficients scaling with the
suitable inverse powers of Λ. Working at energies E � Λ and at finite order in an ex-
pansion in E/Λ there are only a finite number of relevant operators. It is in this weaker
sense that these theories are predictive. This is in complete analogy with the well know
case of pion interactions below the QCD scale. One relevant energy scale of these models
is given by the compactification radius E = 1/R. Several interesting quantities of the low
energy 4d theory can be written as a power series in 1/RΛ and “weak” predictivity can be
is satisfied only for R � 1/Λ. Provided this condition is satisfied, there are indeed some
quantities which are nicely predicted in these models. These are the quantities for which
there exists some 5-dimensional symmetry which forbids direct contributions by local 5d
operators but which is broken by the compactification. This ensures that the value of
these quantities is controlled by calculable IR effects, and so it can be expressed in terms
of other observables (see [5, 3, 6, 7]) . In particular the Higgs potential is protected by
the original N = 2 supersymmetry and falls in this category. Then electroweak symmetry
breaking (ESB) occurs radiatively and is triggered by (global) supersymmetry breaking.
Even more interestingly, one can construct very constrained models with a single light
Higgs scalar before ESB, like the one proposed in [3], evading the need for at least two
Higgs doublets in four-dimensional (4d) supersymmetric extensions of the standard model.
However, doubts were raised on the predictive power [8] and even on the consistency [9] of
these models. The aim of this paper is to readdress these issues and discuss the conditions
under which these models can be consistently defined.

In general, orbifold compactifications do not preserve the consistency of the higher-
dimensional theory, because they correspond to a singular geometry. The consistency
of orbifold models can however be studied from an effective field theory point of view,
without invoking a more fundamental theory. In string orbifold models [10] (see [11, 12]
for specific examples with SS symmetry breaking), consistency is instead guaranteed as
a consequence of more general principles, like modular invariance. The twisted sectors
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arising at the fixed points provide blowing-up modes allowing to resolve the singularities
through their vacuum expectation value (VEV); orbifold compactifications can then be
interpreted as singular limits of smooth manifold compactifications and this is sufficient
to exclude any source of inconsistency. From a low energy supergravity point of view,
anomalies cancel thanks to the presence of the twisted states and a generalization [13] of
the Green-Schwarz (GS) mechanism [14] involving axions.

From an effective field theory view-point, one might think that a simple sufficient
criterion to get a consistent orbifold theory could be to require an anomaly-free spectrum
of chiral zero modes. This has been shown to hold true in the simplest case of S1/Z2

orbifolds [15], but needs a qualification for S1/(Z2 × Z′2) orbifolds, where anomalies may
arise at fixed-points and compensate each other only globally [9]. However, as already
argued in [9], it is important to define the fate of the other symmetries in the theory in
order to reach any sensible conclusion. The correct general statement turns out to be the
following: under the assumption that the spectrum of massless modes is not anomalous,
the theory can be made consistent and free of any localized anomaly, but in general at
the price of introducing operators that are odd under a local 5-dimensional parity. The
reason is that there is no regularization preserving simultaneously gauge invariance and
the 5d local parity. Notice that these operators do not break the orbifold symmetry. As
usual, the choices of preserving one or the other of the symmetries differ by the addition
of a local counterterm violating both symmetries, and the localized anomalies arising in
a regularization that forbids odd operators will be cancelled thanks to an induced odd
Chern-Simons term in a gauge-invariant regularization. The connection between gauge
anomalies and parity breaking by a Chern-Simons term is indeed a well known property
of field theories in odd dimensions.

In supersymmetric theories another important issue concerns the generation of Fayet-
Iliopoulos (FI) terms for the U(1) gauge factors [17]. In 4d theories, this kind of term is not
compatible with a supersymmetric and gauge-invariant vacuum state and is radiatively
generated only in presence of U(1)-gravitational anomalies. Indeed, in supergravity a FI
term is not gauge-invariant unless it is associated to a R-symmetry so that the gravitino
has a charge [18, 19]. In 5d orbifold models, we find that the situation is substantially
different and two different kinds of FI terms can arise. The first type is truly associated
to anomalies and cannot appear if the theory is consistently defined through a gauge-
invariant regularization. The second type corresponds to the boundary completion of a
bulk term present in 5d supergravity. This bulk term is associated to, among other things,
a kinetic mixing between the U(1) photon and the graviphoton. The localized FI term is
necessary to ensure full (supersymmetric) gauge invariance of the bulk term, and as such
its value at the various boundaries is fixed.

The implication of our results for the single Higgs model of [3] is that the theory can be
made fully consistent, but at the price of introducing odd operators. Divergent FI terms
still arise at the fixed points, unless a specific regularization is assumed. For two Higgs
models, the situation is different and one can consistently define these theories without
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the need to include odd operators.
The structure of the paper is the following. In section 2 we discuss the consistency of

odd operators in orbifold models and describe the local 5d parity which they violate. Our
main discussion about anomalies is contained in section 3, while we leave for the appendices
the explicit description of the regularizing procedures and an alternative approach base
on Fujikawa’s method. Section 4 gives a detailed discussion about the consistency of FI
terms at the orbifold fixed points and their relation with anomalies. Finally, in section 5
we discuss the compatibility of our results with supergravity. Conclusions are drawn in
section 6.

2 Odd operators on orbifolds

Consider a 5d model in which one of the spatial dimensions is compactified on a circle
S1, with coordinate y ∈ [0, 2πR]. Consider also 5-dimensional parity P5, corresponding to
a reflection of the fifth coordinate around a fixed point, say y = 0, y → −y, leaving the
other coordinates unaffected. We can choose a basis where each field φ is either even or
odd: P5[φ(y)] = ηφφ(−y), with ηφ = ±1. One possible use of P5 is to make it a (global)
symmetry of the model by forbidding P5-odd operators in the Lagrangian. Another,
distinct possibility is to make it a gauge symmetry by projecting out of our original model
all field configurations that are odd under P5. After the projection each field will satisfy
the condition

φ(y) = P5[φ(y)] = ηφ φ(−y) , (1)

This projection corresponds to the construction of a S1/Z2 orbifold theory. Notice that
orbifolding corresponds to making the fields configuration P5 invariant without any refer-
ence to the Lagrangian. Indeed after the projection, the addition of a parity-odd operator
O− to the Lagrangian has no consequence because its integral over the fifth dimension
trivially vanishes. Nevertheless, now we can add an odd operator, but with a coefficient
that changes sign at the orbifold fixed points and is proportional to:

c(y) =


+1 y ∈ (0, πR)

−1 y ∈ (πR, 2πR)
. (2)

It is obvious that the introduction of parity-odd operators does not break the orbifold sym-
metry. Being a gauge symmetry the orbifold symmetry cannot be broken: non-invariant
states are simply out of the theory. Indeed if we directly define the theory on the segment,
with proper boundary conditions, we see that the idea of breaking the orbifold symmetry
is a nonsense. In the same way a non zero profile for an odd field does not spontaneously
break P5, because of eq. 1.

Once realized that parity-odd operators are allowed by the orbifolding, one may ask
whether it is consistent to leave them out, or, in other words, if they can be forbidden by
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another symmetry. Always remaining in the simplest example of S1/Z2 it is easy to see
that the symmetry of reflection around the midpoint of the fundamental domain,

φ(y) → η φ(πR− y) , (3)

forbids all parity-odd operators: with respect to (1), we have just changed the reflection
point. Notice that this symmetry exchanges the two boundaries: this gives no problem as
all the fields have the same boundary conditions at 0 and πR. This discrete global symme-
try is precisely the Z′2 parity that will be gauged in S1/(Z2×Z′2) models. This symmetry
is obviously explicitly broken by the introduction of odd terms and it is spontaneously
broken by an odd profile 〈φ−(y)〉.

In the case of a S1/(Z2 ×Z′2) theory the situation is slightly more involved. One may
naively imagine to trivially extend the symmetry defined on S1/Z2: reflection around the
midpoint πR/4 of the fundamental domain. In this case we can choose one of the two
possible parity assignments η and η′ given by the two orbifold actions:

φ(y) → η φ(πR/2 − y) , φ(y) → η′ φ(πR/2 − y) . (4)

The point is that both symmetries defined in the above equation are broken by the
boundary conditions: there are fields with different boundary conditions at 0 and πR/2
and this is not compatible with the reflection which exchanges the two fixed points. The
same may happen also on S1/Z2 if we put fixed point interactions which are different
at 0 and πR so that the two fixed points are physically distinguishable. The simple
reason why on S1/(Z2 × Z′2) we cannot find a global 5d parity symmetry is that we have
already gauged the most general discrete symmetry group on S1 [20]. However, even if
it is impossible to define a global symmetry to avoid parity-odd operators, if we do not
introduce odd operators from the beginning they will not be radiatively generated. This is
because only the boundaries break the symmetries of eq. (4), so that only non-local terms
will be influenced 1. To put this idea on more solid grounds we have to define this new
symmetry locally. This is just a diffeomorphism that acts like one of the reflections (4) in
an open set inside the fundamental domain and trivially outside. Obviously we need more
than one chart to define this diffeomorphism over the full space. The boundaries break
global parity very much in the same way they break translations.

The presence of this local parity invariance ensures that odd terms will not be radia-
tively induced starting from a theory with only even terms. Notice that, as this parity
cannot be defined globally, it cannot be used to classify the physical states. Similarly
changing the sign of the coefficients of all the odd operators in the Lagrangian leads to
inequivalent theories. A relevant example, which we will encounter, showing this inequiv-
alence is a Dirac fermion mass.

Although the introduction of odd operators is fully consistent, something singular has
to happen at the orbifold fixed points: either the coefficients of the odd operators have

1We have the same situation as a particle physics experiment in a laboratory which is not parity

symmetric: we do not expect that this will induce local interactions that violate parity.

5



to change sign or the vacuum expectation value of an odd scalar has to jump. In the
absence of this singular behaviour the physics on the orbifold is the “smooth” projection
of the physics on the full circle: in the presence of odd operators the relation with the
original S1 theory may be subtle, as it is shown in the calculation of anomalies through
index theorems in appendix B.

3 Anomalies

In this section we want to study the simple case of 5d spinor electrodynamics compactified
on a S1/(Z2 × Z′2) orbifold. Before writing the Lagrangian and the fields let us briefly
establish our notation. We label our full space-time directions by Latin capital letters
M,N, · · · = 0, 1, 2, 3, 5, where 5 indicates the compact one and we indicate the non-
compact directions by the Greek letters µ, ν, · · · = 0, 1, 2, 3. We use the time-like Lorentz
metric ηMN = diag(+,−,−,−,−). The 5d Dirac matrices ΓM are

Γµ =

(
0 σµ+
σµ− 0

)
≡ γµ , Γ5 = −i

(
−1 0
0 1

)
≡ −iγ5 , σµ± = (1,±σi) , (5)

with σi the Pauli matrices and γµ, γ5 the usual 4d matrices. We associate to fields
the labels (++), (+−), (−,+) and (−,−) depending on their parity under the Z2 × Z′2
transformations. We are interested in the case where Aµ = (+,+) and A5 = (−,−) while
the charged fermion satisfies ψ(−y) = γ5ψ(y) and ψ(πR − y) = −γ5ψ(y). Then if we
write ψ in terms of bispinors ψ = (χ, χ̄c) we have that χ = (−,+) and χc = (+,−). The
Lagrangian is

L =
∫ 2πR

0
dy

[
− 1

4g2
FMNFMN + ψ̄ iΓM

(
∂M − iAM

)
ψ

]
. (6)

Even though we have not included a 5d mass term, no massless fermion survives the com-
pactification because of the Z2×Z′2 parity assignments. The Kaluza-Klein decomposition
of ψ is

χ(x, y) =
∑
n≥0

ξ−+
n (y)χn(x) , χ̄c(x, y) =

∑
n≥0

ξ+−n (y)χ̄nc (x) , (7)

ξ+−n (y) = a2n+1 cos
2n+ 1
R

y , ξ−+
n (y) = a2n+1 sin

2n + 1
R

y , (8)

where a2n+1 = 1
√
πR is 1/

√
2πR for n = 0 and 1/

√
πR otherwise. These represent at each

level n a Dirac fermion with mass Mn = (2n+ 1)/R. The gauge field instead decomposes
as

Aµ(x, y) =
∑
n≥0

ζ+
n (y)Anµ(x) , A5(x, y) =

∑
n≥1

ζ−n (y)An5 (x) , (9)

ζ+
n (y) = a2n cos

2n
R
y , ζ−n (y) = a2n sin

2n
R
y , (10)

6



which represents at each level a massive vector with mass 2n/R. Here a2n equals 1/
√

2πR
for n = 0 and 1/

√
πR otherwise Notice that the orbifold projections act differently on the

two chiralities so that this is a 4d chiral gauge theory. However 4d parity P is still preserved
combined with a 5d reflection about the midpoint y = πR/4 of the fundamental domain:
y → πR/2− y. The action of P on the fields is

χ(x0, xi, y) → χ̄c(x0,−xi, πR/2− y)

χ̄c(x0, xi, y) → χ(x0,−xi, πR/2− y)

Aµ(x0, xi, y) → −Aµ(x0,−xi, πR/2− y)

A5(x0, xi, y) → −A5(x0,−xi, πR/2 − y)
(11)

This transformation leaves the boundary conditions unaffected, and thus P survives after
compactification. The KK gauge bosons Anµ have parity (−)n, so that for n even (odd)
they couple through a vector (axial) current; also the scalars An5 have parity (−)n and
they couple through a scalar (pseudoscalar) density for n even (odd). In the same way it
is easy to see that the system respects a charge conjugation C, defined as

χ(y) → χc(πR/2− y)

χc(y) → χ(πR/2− y)

Aµ(y) → −Aµ(πR/2− y)

A5(y) → A5(πR/2− y)
(12)

The KK modes transform under C as Anµ → (−)n+1Anµ and An5 → (−)n+1An5 . The use of
these discrete symmetries will be useful in the following discussion on the anomaly.

It is known that on Minkowski spacetimes of odd dimensionality Abelian gauge theories
are never anomalous (there are however global anomalies in the non-Abelian case [21, 22]).
However in the case at hand there are boundaries and one should be careful. In fact, as we
already remarked, the system we are considering represents a chiral gauge theory from the
4d view-point: there are both vector (V ) and axial (A) massive gauge fields. Very much
as it happens in 4d, there are in principle UV ambiguities in the definition of the three
point functions of the type AV V and AAA. Moreover, as in 4d, one should not worry
about V V V and AAV which vanish by charge conjugation. As noticed in ref. [15] it is
useful to arrange the fermions in an infinite vector of Dirac spinors Ψ = (ψ1(x), ψ2(x), . . . ),
ψn(x) = (χn(x), χ̄nc (x)). The gauge field is just a (infinite) matrix acting on this vector

Vµ(x) + γ5Aµ(x) =
∫
dy Aµ(x, y) (QV (y) + γ5QA(y)) , (13)

where the charge matrices QV and QA are determined by the fermion wave functions

(QV,A(y))mn =
1
2
[
ξ+−m (y)ξ+−n (y)± ξ−+

m (y)ξ−+
n (y)

]
. (14)

Similarly we can write the coupling to A5 via a scalar charge matrix

A5(x) =
∫
dy A5(x, y)Ω(y) , Ω(y) = QS(y) + γ5QP (y) ,

(QS,P (y))mn =
1
2
[
ξ−+
m (y)ξ+−n (y)∓ ξ+−m (y)ξ−+

n (y)
]
.

(15)

so that the fermion Lagrangian is

L = Ψ̄γµ
(
i∂µ + Vµ(x) + γ5Aµ(x)

)
Ψ− Ψ̄ (M+ iA5(x)) Ψ , (16)
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whereM is the mass matrix: Mmn = δmnMn. The gauge transformations are represented
by

δ
[Vµ(x) + γ5Aµ(x)

]
=
∫
dy ∂µa(x, y) (QV (y) + γ5QA(y))

δA5(x) =
∫
dy ∂ya(x, y)Ω(y)

Ψ(x) → exp
[
i

∫
dy a(x, y) (QV (y) + γ5QA(y))

]
Ψ(x)

(17)

under which invariance of the Lagrangian (16) follows thanks to the relation

∂yΩ(y) = [M, QV (y)] + γ5{M, QA(y)} , (18)

which is nothing but the statement that M ∼ γ5∂5 on the fermion space. In the same
way, the 5d divergence of the fermion current ∂MJM at tree level is simply given by the
variation of the Lagrangian (16) under a gauge rotation of the fermions, keeping the gauge
fields unchanged

∂MJ
M = ∂µΨ̄γµ(QV + γ5QA)Ψ− i Ψ̄[M, QV ] + γ5{M, QA}Ψ . (19)

By the last equation, anomalies of the 5d current can be studied by using the known
4d results [15]. Indeed, eq. (19) is simply a generalization of the familiar expression
δL = ∂µJ

µ
A − 2im ψ̄γ5ψ encountered in the study of the chiral anomaly. By applying

the known 4d results it is then straightforward to calculate the anomaly in the current
conservation

∂MJ
M (x, y) =

1
96π2

[
Tr
(
QL(y)FL(x)F̃L(x)

)
− Tr

(
QR(y)FR(x)F̃R(x)

)]
, (20)

where QR,L = QV ±QA and FR,L = FV ±FA. Using the completeness properties of the
fermion eigenmodes this expression can be written in a very simple and local form [15].
For the model at hand, it was calculated in ref. [9], finding 2

∂MJ
M (x, y) =

1
4

[δ(y)− δ(y − πR/2) + δ(y − πR)− δ(y − 3πR/2)]
−1

96π2
Fµν F̃

µν . (21)

The form of this result, with “equal and opposite anomalies” at the two boundaries, could
have easily been anticipated by simple arguments. First, the anomaly, if it exists, should
be localized at the boundaries: inside the bulk the UV properties of the triple current
correlator are insensitive to the presence of the boundaries, then current conservation
follows from the absence of anomalies in five dimensions. Second, in our case there is a
4d parity symmetry under which the two boundaries are exchanged, and for which the
gauge parameter a(x, y) is a scalar. Then, as FF̃ is parity odd, the contributions at the
two boundaries should be equal and opposite.

2Actually our result is 1/3 that of ref. [9] as we must symmetrize with respect to the external vectors.

See also appendices A and B.
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The result (21) implicitly assumes the use of a mode-by-mode regularization procedure
breaking explicitly gauge invariance. The same result can also be reproduced from a 5d
point of view, for example by using a higher-derivative deformation of the fermionic kinetic
term as shown in appendix A. Alternatively, one can also adopt Fujikawa’s approach, in
which the anomaly is associated to a Jacobian in the measure of the functional integral
defining the effective action; see appendix B.

3.1 Regularizations and counterterms

Let us keep arguing from a 4d perspective. It is well known that the 4d anomaly is
determined up to the addition of local counterterms of the type Amµ Anν∂ρArσεµνρσ. When
at least two of the vectors are different, these counterterms can be used to shift the
anomaly on just one of the three vertices, satisfying current conservation on the other
two. This is what happens for the chiral anomaly, where the anomaly can be shifted to
the axial vector current preserving vector current conservation. Now, eq. (20) corresponds
to symmetrizing the anomaly with respect to the three (in general different) external legs
and so, given a regulator, it represents a particular choice of local counterterms. In general,
eq. (20) should be considered up to the addition of such local counterterms. Indeed in
our case there is yet another class of counterterms one can add in order to shift (or
eliminate) the anomaly. Of our big gauge group only one U(1) factor, associated to the
zero mode A0

µ, corresponds to a linearly realized symmetry. The KK modes correspond
to a Higgsed gauged symmetry for which An5 are the (eaten) Goldstone bosons. Then one
can also add terms of the type Am5 F

n
µν F̃

r µν , which can affect eq. (21) since A5 transforms
inhomogeneously. In looking at this very special 4d system, one may then wonder whether
the anomaly can be eliminated by a specific choice of these two classes of counterterms.
Moreover, having the 5d picture dear, one may also ask whether a choice of counterterms
exists which builds up into a local 5d operator. The answer to these questions is easy.
Thinking directly in 5d, one immediately realizes that the addition of the Chern-Simons
(CS) term

LCS =
1

192π2

∫ πR/2

0
dy εMNOPQAMFNOFPQ (22)

exactly cancels the anomaly of eq. (21). It is easy to see that, when decomposed in
KK modes, the CS term corresponds to local operators belonging to the two classes we
mentioned above.

Notice that in the above equation we have knowingly written the CS term by working
on the single covering of the orbifold. When working on the full circle S1, the CS would
be

LCS =
1
4

1
192π2

∫
S1

dy η(y) εMNOPQAMFNOFPQ , (23)
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where

η(y) =




+1 , y ∈ (0, πR/2) ∪ (πR, 3πR/2)
−1 , y ∈ (πR/2, πR) ∪ (3πR/2, 2πR) . (24)

The almost obvious fact that such a CS term with a jumping coefficient could be used
to cancel the anomaly was also noticed in ref. [9], but not fully exploited. That was
also because of some skepticism about the consistency of this parity odd term with the
orbifold projection. Indeed the CS term is odd, but only under the local 5d parity defined
in section 2. As we have explained in section 2, the Lagrangian in eq. (23) is actually
perfectly consistent with the discrete symmetry that has been gauged to implement the
orbifold projection. Of course, if we defined our field theory just by working on the segment
and by assigning to fields either Dirichlet (+ fields) or Neumann (− fields) conditions at
each boundary, discontinuous parameters would not arise and there would be no orbifold
symmetry to be confused about. Then there would manifestly be no issue.

3.2 Gauge-invariant regularization

We went through all the above discussion of the anomaly because we wanted to better
interpret the result of ref. [9]. Instead we could have started by directly looking for a
gauge invariant regulator. Finding one would imply that there are no anomalies. In fact,
this model can be regulated à la Pauli-Villars (PV). First notice that, compatibly with
gauge invariance and the orbifold boundary conditions, we can add a “jumping” fermion
mass

Lmass = −
∫
S1

dy mη(y) ψ̄ψ . (25)

Then similarly we can add a PV Dirac spinor Ω with wrong statistic and jumping mass
η(y)M . Second we must study the PV spectrum when |M | → ∞ to make sure that all
the modes become infinitely heavy. We remind that this condition is not guaranteed in
the presence of a jumping profile, as localized massless states can arise. For instance,
on S1/Z2 with one Dirac fermion there is one massless chiral mode, which must survive
the addition of a jumping mass mc(y) for continuity reasons [16]. Since parity P is a
symmetry also in the presence of the mass term, the fermion KK modes will keep forming
Dirac fermions. In order to study the spectrum, we need to consider only one chirality,
say ΩL, which is a (−+) field. The eigenvalue equation is

(−∂y +Mη(y))(∂y +Mη(y)) ξ−+
n = M2

n ξ
−+
n (26)

and the eigenvalues are given by the solutions of the equation

−λn
M

= tan
λnπR

2
(27)

through the relation

M2
n = M2 + λ2

n . (28)
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The behaviour of the spectrum for M → ∞ depends on the sign of M . For M positive,
all the solutions λn of eq. (28) are real, and then each Mn → ∞ when M → +∞. For
M negative, and more precisely for M < −2/(πR), there is also an imaginary solution
λ0 = iλ̃. As M → −∞, λ0 → iM and the corresponding eigenvalue M0 → 0 (one has
M0 ∼

√
2Me−MπR/2). This asymptotically massless mode is localized at y = πR/2, while

its right handed partner is localized at the other boundary. This result is fairly intuitive.
For |M | � 1/R, positive or negative, the presence of localized light fermions at each
boundary can be established by disregarding the effects of the other boundary. Only
for M negative are there localized zero modes compatibly with the Z2 or Z′2 boundary
condition at each fixed point. A (set of) PV fields with positive mass is then our candidate
regulator. As we will see in a moment, the selection of a sign for the regulator mass M is
associated to the sign of the CS term which cancels the anomaly.

We have explicitly checked that the fermion loop short distance singularities are regu-
lated to an arbitrary degree by adding a combinations of PV fields. Consider for instance
the vector 3-point function. It is convenient to work in Euclidean momentum space along
the compact directions and in position space for the fifth direction. We can for instance
calculate the fermion propagator in the limit in which we take the second fixed point to
infinity (p̃ ≡

√
p2 +m2):

S(p; y, y′) =
1
2p̃

[e−p̃(y+y′)
p̃+M

(
p̃ γ5− 6p−M

)(
p̃ γ5 +M

)
+ ep̃(y

′−y)·sgn(y−y′)(− p̃ γ5 · sgn(y − y′)+ 6p+M
)]
.

(29)

In this mixed notation the 3-point vertex depends on both the three 4d external momenta
(p1, p2, p3) and the three positions in the fifth dimension (y1, y2, y3) and of course there
is a d4p integral over the virtual 4d momentum. UV ambiguities arise only when the yi
coalesce to a point, otherwise the loop momentum integral converges exponentially thanks
to the propagator terms exp−(|p̃||∆y|). However for coinciding y’s the integrand is just
an analytic function of the momenta and masses. So it can be made to vanish for p→∞
like 1/pk with arbitrary k by the addition of a suitable number of PV fields with masses
Mi and charges qi satisfying relations of the type∑

i

q3i = 1 ,
∑
i

q3iM
n
i = 0 for n > 0 (30)

where the first relation ensures that the leading divergence associated with the the physical
fermion (with charge q = 1) is cancelled. Then all the possible UV ambiguities in the gauge
boson vertices can be eliminated in a manifestly gauge invariant way and we conclude
that the theory is not anomalous. The presence of a gauge-invariant regulator allows
to power-count the UV divergences by using gauge invariance. For 3-point vertices it is
straightforward to see that the result must be finite: the only bulk operator which could,
in principle, be logarithmically divergent is the CS term, however the CS cannot be made
fully gauge invariant by addition of local terms at the boundaries. Still, in order to properly
define the 3-point vertex the addition of at least one PV field is necessary. In order to see
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this, it is easier to work with KK-modes rather that with the mixed propagator. The basic
story is the following. The only vertices that are potentially anomalous and need regulation
are those for which the 3 vector wave numbers satisfy the relation n1 + n2 + n3 = odd
[9]. (These are the vertices of the type AV V and AAA. The V V V and AAV vanish
by charge conjugation, while those involving one external scalar are finite.) For these
diagrams, there is only a finite number of choices of the internal fermion fifth momentum:
there is no infinite KK sum and the situation is therefore exactly the same as in 4d, with
a linear divergence. This is essentially due to the fact that n1 + n2 + n3 = odd violates
momentum conservation in the fifth direction. The presence of these diagrams is just a
consequence of the boundary. Given the external bosons, there are two such diagrams
(see fig. 1). They are individually linearly divergent, but though their sum is finite the

n1

n2 n3

k l

m

n1

n2 n3

k l

m

Figure 1: The two diagrams contributing to the vector three-point function.

result is ambiguous since it depends on the routing of the integration momentum on each
diagram. The addition of one PV regulator field resolves this ambiguity while preserving
gauge invariance. Now for each diagram of fig. 1 we subtract an (infinite) series of PV
diagrams. After the subtraction the linear divergence is eliminated and there is no longer
a momentum routing ambiguity. The series of PV diagrams works like a generalization
of multi PV regulators. What matters is that the leading divergence of the sum of PV
matches exactly the leading divergence of the physical diagram. This is explained in detail
in the appendix A.

We have argued that the anomaly can eliminated by either adding a CS with jumping
coefficient or by regulating the theory via a PV with jumping mass. What is the relation
between the two approaches? The answer is pretty simple. Notice first of all that both
the CS and the fermion mass are odd under the (local) 5d parity. Then, by symmetry and
power counting, it is expected that for M →∞ there should remain a finite CS term. We
can easily calculate its coefficient by looking at the triple vertex for three points inside the
bulk. For M →∞ the term that interests us does not feel the presence of the boundaries
and is the same one obtains in an infinite fifth dimension. By explicit calculation we find
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that the effective CS term is

LeffCS =
1
4

1
192π2

M

|M |
∫
S1

dy η(y) εMNOPQAMFNOFPQ (31)

which is precisely what we need to cancel the anomaly provided M is positive. But M
positive is indeed the requirement imposed on our regulator by the decoupling requirement.
Therefore the two pictures nicely match.

4 The Fayet-Iliopoulos term

Given the connection between FI terms and mixed U(1)-gravitational anomalies in 4d, it
is natural to ask whether a similar relation persists in 5d orbifold theories as well.

It is well-known that 4d theories with rigid supersymmetry admit a FI term for U(1)
vector multiplets: LFI = [ξV ]D. This term is manifestly supersymmetric. It is also
invariant under super-gauge transformation V → V + Λ + Λ̄, since [Λ]D = [Λ̄]D = 0.
However, its presence destabilises the vacuum and triggers the spontaneous breaking either
of supersymmetry or of the U(1) gauge symmetry (or of both).

In 4d supergravity theories, the situation is different: the naive extension of the rigid
FI term is not gauge invariant by itself. In the super-conformal approach [23], with a
compensator chiral multiplet S0, a rigid FI term would be promoted to [S0S̄0ξV ]D, which
is no longer invariant under V → V + Λ + Λ̄ since [S0S̄0Λ]D and [S0S̄0Λ̄]D are non-zero.
To write a gauge-invariant generalization of a FI term, S0 must transform under the U(1)
symmetry: a term of the form [S0S̄0e

ξV ]D will be invariant, provided the compensator
undergoes a super-Weyl transformation S0 → e−ξΛS0, S̄0 → e−ξΛ̄S̄0 [18, 19]. This implies
that the U(1) symmetry must in fact be a gauged version of the U(1)R symmetry: the
FI term will induce a non-vanishing charge for the gravitino. In component fields we can
check that the linear term [S0S̄0ξV ]D = ξe(D + i

4ε
µνρσψ̄µγνψρAσ + · · · ) contains indeed

a coupling of the U(1) vector field Aµ to the gravitino ψµ, beside the rigid FI term.
An alternative way to have a FI-like term in local supersymmetry is to introduce the

superfield V in combination with a chiral multiplet Φ transforming non homogeneously
under the U(1): Φ → Φ−Λ. One can then write a generic gauge-invariant Kähler potential
of the form K(Φ+Φ̄+V ); the linear piece in the expansion of K will give rise to a FI term
K ′(〈Φ+Φ̄〉)V [13]. In general, this mechanism gives however a mass term 1

2K
′′(〈Φ+Φ̄〉)V 2

for the U(1) gauge boson.
Summarizing, in four dimensions, a FI term is in general not gauge-invariant in the

presence of gravity. If the theory is affected by mixed U(1)-gravitational anomalies, how-
ever, this term is radiatively generated. More precisely, the anomaly and the FI term will
be simultaneously generated at one-loop, with a common coefficient given by the trace of
the U(1) charge over the spectrum of the model.

Given its connection with mixed anomalies in the 4d supergravity we are interested to
study the possibility to have FI terms at the orbifold fixed points in the 5d theory. We
will see that the situation is quite different with respect to the 4d case. Indeed, from the
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4d point of view, the chiral multiplet Φ containing A5 transforms inhomogeneously under
gauge transformations and it has a Kähler potential of the form K(Φ + Φ̄− ∂5V ). As we
shall see, this will allow for a consistent FI term, whose gauge variation is cancelled by
bulk terms. Furthermore, such a term will break spontaneously neither supersymmetry
nor the gauge symmetry, contrarily to what happens in 4d. Moreover we will see that the
radiative generation of FI operators at the orbifold fixed points is not forbidden even in
the absence of mixed anomalies.

4.1 The S1/Z2 model

We begin by considering the S1/Z2 case, where one of the supersymmetries remains un-
broken and one can efficiently use the superfield formalism with respect to this N = 1 [24].
A N = 2 vector multiplet decomposes into a N = 1 vector multiplet V = (Aµ, λ1,D) plus
a chiral multiplet Φ = ( 1√

2
(Σ + iA5), λ2, G), transforming in the adjoint representation of

the gauge group 3. Similarly, a N = 2 hypermultiplet H = (φ, φc, χ, χc) decomposes into
two chiral multiplets H = (φ, χ, F ) and Hc = (φc, χc, Fc). The kinetic Lagrangian of a
hypermultiplet interacting with a U(1) vector multiplet, in presence of a FI term is

LK =
1
g2

∫
d4θ
[
2 ξ(y)V + (∂5V − 1√

2
(Φ + Φ̄))2

]
+

1
4g2

∫ [
d2θWαWα + h.c.

]

+
∫
d4θ

[
H̄eqVH +Hce

−qV H̄c

]
−
∫ [

d2θHc

(
∂5 − q√

2
Φ−m(y)

)
H + h.c.

]
.

(32)

where g is the gauge coupling and q is a dimensionless charge. Notice the appearance of
the covariant derivative in the extra dimension ∂5 − q√

2
Φ [24, 25]. The Lagrangian above

is manifestly supersymmetric and also Z2 invariant if m(−y) = −m(y), and ξ(−y) = ξ(y).
Furthermore, N = 2 bulk supersymmetry would imply that m(y) and ξ(y) are piecewise
constant: m(y) = m · c(y) and ξ(y) = ξ0 plus contributions localized at the orbifold fixed-
points. For the bosonic components, one finds (after eliminating the auxiliary fields G, F
and Fc):

LK =
1
g2

[
− 1

4
FMNF

MN +
1
2
∂MΣ ∂MΣ +

1
2
(D + ∂5Σ)2 − ξ(y)D

]
+ |DMφ|2 −

[
(m(y) + qΣ)2 + ∂5m(y) + q

(
D + ∂5Σ

)]|φ|2
+ |DMφc|2 −

[
(m(y) + qΣ)2 − ∂5m(y)− q

(
D + ∂5Σ

)]|φc|2 .
(33)

Notice the appearance of the ∂5m mass terms. In the relevant case of a piecewise con-
stant m, these are contributions localized at the boundary. Their presence makes sure
that the 5d-supercurrent SαM is conserved everywhere, a necessary condition to define the
supergravity version of the model. The equation of motion for D is

D = ξ(y)− ∂5Σ + q g2 (|φ|2 − |φc|2) . (34)

3In terms of N = 2 auxiliary fields, one has: D = X3 − ∂5Σ and G = X1 + iX2 [27].
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We see that differently from the 4d case, the neutral scalar Σ appears in the equation
of motion for D. This is due to the non-homogeneous transformation law of the chiral
multiplet Φ and allows to find a supersymmetric (D = 0) and gauge-invariant vacuum
state even in presence of the FI term. In fact, the D-flatness condition can be solved with
〈φ〉 = 〈φc〉 = 0 and ∂5〈Σ(y)〉 = ξ(y). For generic FI terms at the two fixed points it is in
general impossible to satisfy the condition D = 0 at both boundaries. An “integrability
condition”

∫
dy ξ(y) = 0 is necessary to have a supersymmetric vacuum state: we must

have opposite FI terms at the two sides. This requirement is equivalent to have a vanishing
FI term in the effective 4d action: this was expected, because, as we saw, a 4d FI term
is not compatible with a gauge-invariant supersymmetric vacuum. If the integrability
condition is satisfied, the scalar potential is

Vscalar =
[
(m(y) + qΣ)2(|φ|2 + |φc|2) + ∂5(m(y) + qΣ)(|φ|2 − |φc|2)

]
. (35)

The net effect of the FI terms is then to shift the mass terms by the VEV of Σ(y).
A FI term satisfying the integrability condition is in fact equivalent to shifting Φ by

a stepwise constant. This can be easily seen from the Lagrangian (32): a non-vanishing
〈Φ + Φ̄〉 =

√
2〈Σ(y)〉 in the second term generates a term −2〈Σ(y)〉[∂5V − 1√

2
(Φ + Φ̄)]D,

which, in rigid supersymmetry, is equivalent to a FI term with ξ(y) = ∂5〈Σ(y)〉 after
integration by parts.

This relationship between the FI term and bulk operators turns out to be important
to understand the supergravity extension. In particular it says that boundary FI terms
are equivalent to the bulk operator c(y)[∂5V − 1√

2
(Φ + Φ̄)]D after integration by parts. In

the rigid limit we are considering, the addition of − 1√
2
(Φ+ Φ̄)]D to the FI operator seems

superfluous as it vanishes. However it is important to keep it, as it shows that the FI is
gauge invariant independently of the flat supersymmetry background we are working on.
Basically this FI term belongs to the same class as those arising in heterotic string models
for anomalous U(1)’, where the dilaton plays the role here played by Φ 4. Therefore we
expect the gauge invariance of such a FI to be “robust” and to resist the extension to
supergravity. Indeed, one can write a bulk operator of the form c(y)[S0S̄0(∂5V − 1√

2
(Φ +

Φ̄))]D = c(y) e (∂5D+ i
4ε
µνρσψ̄µγνψρFσ5 + · · · ). In this way, the gravitino coupling arising

in the supergravity completion of the rigid FI term becomes a non-minimal bulk coupling
that is perfectly gauge-invariant.

We have seen that FI terms at the orbifold fixed points are quite different from the
familiar FI in 4d. To complete the analysis we want to show that FI terms can be
radiatively generated even in the absence of mixed anomalies, contrarily to what happens
in 4d. The calculation of the one-loop corrections to the FI term is most conveniently
done working in Euclidean momentum space for the four non-compact directions and in
configuration space for the fifth dimension, as in [6]. In this way many subtleties related

4This is completely obvious in the deconstructed version of the model [26], where the integrability

condition corresponds to the requirement that the FI be purely along a non linearly realized U(1), with

zero overlap with the linearly realized one.
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to the sum over the KK tower disappear. It is easy to calculate5:

ξ(y) = q g2

∫
d4p

(2π)4
(G+ −G−)(p; y, y) , (36)

where G+ is the propagator for the even scalar φ and G− that for the odd scalar φc,
evaluated at points coinciding in the extra dimension. The propagator for the even field
satisfies the equation:[

p2 − ∂2
y +m2 + 2m

(
δ(y)− δ(y − πR)

)]
G+(p; y, y′) = δ(y − y′) , (37)

while the odd propagator satisfies the same equation without boundary mass terms, as
it vanishes at the fixed points. The explicit solutions at coincident points in the fifth
dimension are (p̃ ≡

√
p2 +m2):

G+(p; y, y) =

[
cosh p̃y + m

p̃ sinh p̃y
][

cosh p̃(πR− y)− m
p̃ sinh p̃(πR− y)

]
p̃
(
1− m2

p̃2

)
sinh p̃πR

, (38)

G−(p; y, y) =
sinh p̃y sinh p̃(πR− y)

p̃ sinh p̃πR
. (39)

The contribution of the two scalars tend to cancel in the bulk; in fact, we expect a
divergent FI term to appear only at the boundaries. To study this divergent terms, we
can take the limit R→∞ in G+ −G−, obtaining:

(G+ −G−)(p; y, y) → e−2p̃y

p̃+m
+
e−2p̃(πR−y)

p̃−m
. (40)

We are left with a contribution for each boundary, exponentially suppressed in the bulk.
Since a massive hypermultiplet on S1/Z2 has zero modes for any value of its mass, it is
not possible to regulate the theory à la PV; we introduce therefore a momentum cut-off
Λ. The FI profile behaves as Λ3 at distances shorter than Λ−1. There are quadratic and
linear divergences proportional to a δ function and a logarithmic divergence proportional
to a δ′′; their coefficients can be extracted by using p̃ e−2p̃z → δ(z) + δ′′(z)/(4p̃2) in the
UV region p̃→∞ of the integral. One finds:

ξ div(y) =
g2

16π2

{
qΛ2

[
δ(y) + δ(y − πR)

]
− 2 q mΛ

[
δ(y)− δ(y − πR)

]

+
1
2
q ln

Λ
|m|
[
δ′′(y) + δ′′(y − πR)

]}
.

(41)

The last term does not correspond to a FI term in the usual sense, but is actually a
higher-derivative operator.

Consider now the case of several hypermultiplets with charges qi and masses mi. The
total U(1)-gravitational anomaly is proportional to

∑
i qi. If this anomaly vanishes, the

5No similar tadpole is generated for Σ; this would obviously be non supersymmetric.
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first term in ξ(y) vanishes too as it must, since it would give a FI term in the 4d effective
theory that is not gauge-invariant in presence of gravity; the first term is a “standard” FI
operator. One is then left with a residual FI term satisfying the integrability condition∫
dy ξ(y) = 0, that, as we have discussed above, corresponds to a gauge-invariant bulk

term, whose net effect is to correct the masses of the charged scalars to:

m′
i = mi − g2

16π2
qi
∑
j

qjmjΛ . (42)

Notice that the radiatively induced FI operators correspond to an odd bulk operator
which explicitly violates the Z′2 global symmetry discussed in section 2. Indeed, this term
is generated only introducing mass terms which violate this symmetry in the tree-level
Lagrangian.

4.2 The S1/(Z2 × Z′
2) model

Consider now the S1/(Z2 × Z′2) orbifold. In this case no rigid supersymmetry is left
unbroken globally: each boundary satisfies a different N = 1 supersymmetry out of the
N = 2. However the condition that the model be embeddable in 5d-supergravity places
strong constraints on the local Lagrangian. For instance, like in the previous section,
a hypermultiplet bulk mass term should be completed by scalar masses localized at the
boundaries. We would like to find the generalization of what we discussed in the S1/Z2

case, where FI terms can be consistently put on the boundaries without inducing gauge or
supersymmetry breaking. In this case we have to impose the D-flatness condition at each
boundary, with respect to the residual N = 1 supersymmetry of that fixed point: in this
way locally we have no supersymmetry or gauge symmetry breaking; supersymmetry is
broken only by non-local terms. The decomposition of the N = 2 multiplets with respect
to the two supersymmetries of the two boundaries gives for the auxiliary field of the vector
multiplet: D = X3−∂5Σ and D′ = X3 +∂5Σ, where Xa is the SU(2)R triplet of auxiliary
fields of the D = 5 vector multiplet [27]. The relative minus sign in the expressions for D
and D′ can be understood as a consequence of the R-symmetry rotation of the triplet Xa,
which is needed to go from a N = 1 supersymmetry to the other. All the terms D + ∂5Σ
in the Lagrangian (33) become D − ∂5Σ with respect to the other supersymmetry, thus
we can write explicitly the D-flatness conditions at the two boundaries

D = ξ1 δ(y)− ∂5Σ = 0 ,

D′ = ξ2 δ(y − πR/2) + ∂5Σ = 0 .
(43)

We see that to solve both equations we must have equal (and not opposite as in S1/Z2) FI
terms on the boundaries. As in the S1/Z2 case, we expect that such FI terms should be
easily extended to supergravity: their gauge variation will be cancelled by bulk terms, that
explicitly break the local parity symmetry defined in section 2 for the S1/(Z2 ×Z′2) case.
When the FI terms at the two fixed points are different, (local) supersymmetry or gauge
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symmetry (or both) are spontaneously broken. In this case we expect the supergravity
extension to be non trivial and the gravitino charged under the U(1).

Consider now the one-loop renormalization of the FI term induced by a charged hyper-
multiplet with scalars φ++ and φ−−c , whose form is given by an equation analogous to (36).
As in the S1/Z2 case there will be mass terms on the fixed points. At each boundary one
can use the superfield formalism as in the previous section to find the proper term which
locally restore supersymmetry. It is easily found, by using the second term of eq. (35) and
the fact that we have to exchange φ and φ†c to go from one rigid supersymmetry to the
other, that in this case the two mass terms have the same sign at the two fixed points.
Therefore we have a scalar potential of the form

Vscalar =
[
(m(y) + qΣ)2(|φ|2 + |φc|2) + 2m(δ(y) + δ(y − πR/2))|φ|2

]
. (44)

The propagator for the odd scalar is again unaffected by the boundary terms whereas
the even propagator satisfies[

p2 − ∂2
y +m2 + 2m

(
δ(y) + δ(y − πR/2)

)]
G++(p; y, y′) = δ(y − y′) . (45)

Their explicit form for coincident points in the extra dimension is

G++(p; y, y) =

[
cosh p̃y + m

p̃ sinh p̃y
][

cosh p̃(πR2 − y) + m
p̃ sinh p̃(πR2 − y)

]
p̃
[(

1 + m2

p̃2

)
sinh p̃πR2 + 2 m

p̃ cosh p̃πR2
] , (46)

G−−(p; y, y) =
sinh p̃y sinh p̃(πR2 − y)

p̃ sinh p̃πR2
. (47)

In the massless case, one easily recovers the result of [9] for the FI profile after integrating
over the momentum. More generally, one can study the divergent contribution by taking
as before the limit R→∞. The result is obviously the same as in the S1/Z2 case because
in this limit the propagator at one boundary is insensitive to the other boundary. The
only change is the different sign of the mass at the second fixed point:

(G++ −G−−)(p; y, y) → e−2p̃y

p̃+m
+
e−2p̃(πR

2
−y)

p̃+m
. (48)

The divergent part of the FI terms is then found to be

ξ div(y) =
g2

16π2

{(
qΛ2 − 2 q mΛ

)[
δ(y) + δ(y − πR/2)

]

+
1
2
q ln

Λ
|m|
[
δ′′(y) + δ′′(y − πR/2)

]}
.

(49)

The terms proportional to the δ’s correspond to induced FI terms equal at the two bound-
aries. This, as we said, gives a vacuum which is both (locally) supersymmetric and gauge
invariant. The δ′′ term gives instead a higher-derivative operator. Notice that there is
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no logarithmic divergence in the δ terms, though one would naively expect one on power
counting grounds. The reason is that such a term would be a bulk operator violating the
local parity, and its coefficient would have to be of the form m|m|; but such a term, being
non-analytic in the mass parameter, cannot be divergent.

Differently from the S1/Z2 case, a theory with a massless Higgs hypermultiplet of
charge q = 1 on S1/(Z2 × Z′2) can be regularized with a set of PV fields, as already
explained in section 3. In order to calculate the FI at one loop, the masses and charges
of the regulators must satisfy

∑
i qi = 1 and

∑
i qiMi = 0; this regularizes the quadratic

and linear divergence in the δ terms, and also the logarithmic divergence in the δ′′ terms.
In the limit Mi → +∞, we are left with a divergent contribution of the form

ξ div(y) =
g2

16π2

{
− 2

∑
i

qiMi|Mi|
[
δ(y) + δ(y − πR/2)

]

+
1
4

∑
i

qi ln
|Mi|
µ

[
δ′′(y) + δ′′(y − πR/2)

]}
,

(50)

where µ is an arbitrary renormalization scale. In order to renormalize the theory, we have
to add local counterterms that cancel ξdiv. After doing so, the one-loop correction to the FI
term is a UV finite distribution ξ̂(y) which, away from the boundaries, is purely determined
by the 5d massless physical fields. Our introduction of a set of PV fields satisfying the two
conditions

∑
i qi = 1,

∑
i qiMi = 0 and of the local counterterms corresponds to making

ξ̂(y) and y2ξ̂(y) integrable and finite when Mi →∞. The integral
∫
dy y2ξ̂(y) ∝ log µR is

infrared divergent in the limit of infinite extra dimension: R acts as an IR cut-off.
Had we chosen a set of PV fields satisfying

∑
i qiM

2
i = 0 (recall that we must take

Mi > 0 for the regulators to decouple), the FI terms would have been finite. We will see
in section 5 that this particular choice of regularization has a clear interpretation in the
5d supergravity extension of the theory. It is worth noting that with this choice, the zero
mode of ξ̂ (i.e. its integral over the full circle) vanishes exactly, while naively we would
have expected a non-zero answer scaling like 1/R2. This result is less surprising when
the calculation is done through a KK mode expansion. In that case, the zero mode of ξ,
before regulation, is determined by just one diagram where the scalar zero mode circulates
and therefore it is formally independent of R, although infinite. The regulated result then
should be finite while being still R independent, so it must be zero.

5 Supergravity embedding

In models where the existence of a locally conserved supercurrent is crucial (as in [3]) to
constrain the possible divergences appearing in the effective action, one is naturally led
to consider a supergravity embedding. It is therefore important to show how what we
said in the previous sections is explicitly extended to 5d supergravity, in particular the
introduction of a gauge invariant PV regulator with a stepwise mass term.
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Every locally supersymmetric 5d theory must contain the gravity multiplet, composed
by the graviton gMN , a symplectic Majorana gravitino ψM and a vector field AM : the
graviphoton. If we add to the pure gravitational theory nV vector multiplets, the La-
grangian is completely determined by the geometry of the manifold M parametrized by
the nV vector-multiplet scalars φx. This geometry is specified starting from a (nV + 1)-
dimensional space C with coordinates bi and Kähler potential K(bi) = dijkb

ibjbk. The
scalar manifold M ⊂ C is then defined through the constraint K(bi) = 6 on which
bi = bi(φx) and the metric Gij = −1

2∂i∂j lnK(bi) on C induces a metric Gxy = ∂xb
i∂yb

jGij

on M 6. The Lagrangian is [29]:

L = − e

2κ2

[
R+Gxy ∂Mφ

x∂Mφy +Gij F
i
MNF

j MN +
dijk

6
√

2
εMNPQRAiMF

j
NPF

k
QR

− i bi

2
√

2

(
ψ̄MΓMNPQψN + 2 ψ̄PψQ

)
F iPQ + · · ·

]
,

(51)

where the dots stand for terms involving the gauginos, that will not play any role in our
discussion, and four-fermion terms. We indicate with Ai the set of nV vectors and the
graviphoton. Note that Chern-Simons terms are a fundamental ingredient of 5d super-
gravity.

Matter hypermultiplets can be easily introduced in the theory. Interactions with the
vector multiplets can be achieved by gauging suitable isometries of the hypermultiplet
scalar manifold (for a complete discussion see [30] and references therein 7). A similar
gauging is necessary also to generate mass terms and a potential for the hypermultiplets.
In particular the hypermultiplet mass terms of rigid supersymmetry correspond to gauging
by the graviphoton: the mass of each hypermultiplet is proportional to its gravicharge.
We are interested in a flat gauging, in which no cosmological constant is generated. It is
well known that this is possible, provided that the gravitino has zero charge or, in other
words, the gauged isometry is not part of the R-symmetry.

Consider now such a supergravity theory on an orbifold. Under any orbifold symmetry,
the bosonic fields (gµν , g55, A5) of the gravity multiplet must be taken even, while (gµ5, Aµ)
are odd. If we admit only even operators, the theory remains locally supersymmetric, both
in the bulk and at the fixed-points. Odd operators can be consistently introduced along
the lines of [32]. To obtain a stepwise coefficient g, one promotes it to a field G(x),
invariant under supersymmetry: in this way the Lagrangian is no longer supersymmetric
and its variation may be written as δL = JM∂

MG. This variation can be cancelled by
introducing a new four-form field A4 with Lagrangian Lmult = A4 ∧ dG and transforming
as δA4 = −∗J , in such a way that δ(L + Lmult) = 0. The field A4 acts as a Lagrange
multiplier forcing ∂MG = 0 through its equation of motion, which yields back a constant

6The origin of this nice geometric description lies in the fact that 5d supergravities can be obtained as

compactifications of eleven-dimensional supergravity on a Calabi-Yau space. The symmetric tensor dijk

appearing in the Kähler potential encodes the intersection numbers of the Calabi-Yau and the constraint

K = 6 corresponds to constant volume, whose fluctuations are described by an independent universal

scalar field. See for example [28].
7For a D = 4, N = 2 pre-geometric approach, see [31]
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G on-shell, i.e. the situation we started with. At this stage, however, a non-trivial
generalization can be obtained by introducing sources for A4. Adding terms of the form
Lsource =

∑
i µiδ(y−yi)(A4 +W ), where W is an additional term that is required to make

δLsource = 0 on its own, the equation of motion of A4 yields ∂5G =
∑

i µiδ(y − yi), which
implies that G must have a piecewise constant profile on-shell. Notice that this extension
is consistent provided the integrability condition

∑
i µi = 0 is satisfied. We have thus

described a general method to introduce odd operators in supergravity, which, after the
elimination of the Lagrange multiplier 4-form, reduces to a proper addition of operators
at the fixed points which makes the full action invariant.

At this point, we are ready to discuss the generalization of the results obtained in
the previous sections. From the above reasoning, it is clear that there is no obstruction
to introduce a PV regulator with a jumping mass. The boundary mass terms found in
section 4 arise here from the W term, which is needed to make the fixed point action
invariant. This means that, even in supergravity, it is possible to regularize the theory in
a gauge-invariant way, so that no anomaly will arise. As in the rigid limit, the PV regulator
introduces a local CS term in the limit of infinite mass, with a jumping coefficient that is
again described along the lines of [32]. Since the PV field has a non vanishing gravicharge
ri related to its mass, Mi ∝ riκ

−1, a CS term with a photon and two graviphotons will
also be generated, with a coefficient proportional to

∑
i qir

2
i .

In rigid supersymmetry we have seen that we can add FI terms on the boundaries
with an arbitrary coefficient, modifying in this way the VEV of the scalar Σ. However we
also noticed that the FI should truly be regarded as an odd bulk operator, since in this
way its full gauge invariance is manifest. We have also seen that in supegravity odd bulk
operators are made consistent only by the addition of specific boundary terms [32]. It is
then natural to expect that in supergravity the FI term is completely fixed by the bulk
Lagrangian, i.e. by the structure constant dijk. Notice that since the FI fixes the VEV
profile of the gauge scalars Σ, then the structure constants dijk themselves will determine
where on the manifold M the vacuum is.

We will now explain this in more detail. In practice we will will check that the additive
renormalization of the hypermultiplet mass term which is generated in the flat theory by
the FI term can be also calculated in the supergravity extension just by considering the
dijk. Let us focus on a supergravity model with n hypermultiplets and with a single
vector field BM (which plays the role of hypercharge in the model of ref. [3]) besides the
graviphoton AM . We consider the interesting situation where Bµ is even under the orbifold
symmetry, while Aµ is necessarily odd. The two vectors gauge a U(1)A ×U(1)B isometry
of the hypermultiplet manifold which we assume to be linearly realized. Around the
U(1)2 symmetric point, the action of the two isometries is just described in the linearized
approximation by two commuting charge matrices QA(y) = η(y)Q̂A and QB acting on the
n-dimensional hypermultiplet. Notice that since Aµ is odd its charge matrix undergoes
an overall sign change at each fixed point [32]. Five dimensional supergravity fixes the
hypermultiplet mass matrix to be M(QAbA(φ)+QBb

B(φ)) where M is just the 5d Planck
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scale up to some fixed constant (which is however unimportant in the following discussion).
Notice that since the mass terms are odd operators, bA must be even and bB must be odd.
Without loss of generality we can then choose bB = φ/M where φ is an odd scalar, while
bA is fixed in terms of φ through the constraint dijkbibjbk = 6. The scalar φ is the
superpartner of B when we take the flat limit. Now, let us start from a a Lagrangian
without parity-odd operators in the pure gauge sector: only the constants dAAA = 6 and
dABB = 1/(Mg2

B) will be different from zero. Here we put in evidence the relation with the
U(1)B coupling g2

B . Since there are no odd terms in the gauge sector, by the procedure
of ref. [32] we should not add any boundary term to enforce local supersymmetry. In
particular there should be no boundary term involving just φ, and since φ is odd it
must vanish on the vacuum. Then the solution of the structural constraint will just be
bA = 1, bB = 0, and the matter mass matrix will point along the graviphoton charge.
What we have just outlined is the supergravity picture of a rigid theory without U(1)B
Fayet-Iliopoulos term. The absence of a FI term is also consistent with the fact that the
pure gauge supergravity Lagrangian is quadratic in B: dAAB = 0. Consider now a slight
deformation of the previous model where we introduce a (small) dAAB = 2εη(y)dABB .
The new term introduces a kinetic mixing between B and A along with a AAB CS
term. Now we have terms that jump at the boundary and must be careful to work out
the boundary Lagrangian according to [32]. However one can straightforwardly map the
deformed theory back to the original one by noticing that through the field redefinition
AM = ÃM , BM = B̃M − εη(y)ÃM , the structure constant go back (up to O(ε2) terms) to
the original ones, with dAAB = dBBB = 0. (Notice that the field strengths rotate precisely
as A and B, without spurious terms, in spite of the presence of η(y). This is thanks to AM
being odd; a field redefinition of the type AM → AM +η(y)BM would not be well behaved
at the boundaries.) In the tilded basis we must have the same result as before b̃A = 1,
b̃B = 0, and by transforming back we find bA ' 1, bB = −εη(y). The mass term of the
deformed theory is therefore M(QA−εη(y)QB): a new term along QB has been generated.
The case we have just described should correspond to the supergravity extension of a flat
theory with a FI ∝ dAAB. We have explicitly checked this by considering a theory which
has dAAB = 0 at tree level and by calculating the 1-loop renormalizations of A∧ dA∧ dB
and of the B FI, which are both ∝ Tr(QAQAQB). We find that the correction to the
matter mass matrix calculated with the above supergravity reasoning coincides with the
direct calculation in rigid supersymmetry via the FI term. This shows explicitly that the
FI term is just the flat limit remainder of a non-zero dAAB .

An independent argument for this interpretation can be obtained by looking at the
gravitino term εµνρσψ̄µγνψρFσ5 appearing in the N = 1 supergravity completion of gauge-
invariant FI terms (see section 4.1), which in the N = 2 theory must come from the
last term in the Lagrangian (51). As we have seen, a vanishing FI term corresponds to
only bA different from zero so that the gravitino couples only to the graviphoton. A non-
vanishing FI term leads instead to bB 6= 0, implying a coupling between the gravitino and
the corresponding field strength.
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Summarizing, FI terms are seen as part of a parity-odd N = 2 supergravity bulk oper-
ator which contains a CS term with the corresponding gauge field and two graviphotons.
If we cannot regulate the theory maintaining the local parity symmetry, these terms will
be radiatively generated. The advantage of the supergravity point of view is that we can
better understand the condition

∑
i qiM

2
i = 0: the absence of FI terms is equivalent to

a choice of regularization such that a CS term for two graviphotons and a photon is not
generated or, equivalently, which does not mix the two vectors. We stress however that
from the effective field theory viewpoint there is no symmetry we can impose to avoid such
operators, the only possible candidate, 5d parity, being broken to ensure gauge invariance.

6 Conclusions

We have shown that orbifold field theories with a non-anomalous spectrum of zero modes
can in general be made gauge invariant only at the price of introducing odd operators. In
particular there should effectively be a Chern-Simons term with a coefficient unambigu-
ously fixed by the requirement of anomaly cancellation. These operators are allowed by the
orbifold symmetry, but violate local 5d parity. The introduction of these new interactions
has in general an important phenomenological impact, chiefly for non-supersymmetric
models. Indeed 5d parity plays the role of a discrete chiral symmetry, and by its explicit
breaking Dirac fermion masses can no longer be naturally forbidden. For instance, the
CS term gives rise at 2-loop level to a quartically divergent mass for charged fermions.
In supersymmetric models like [3] bulk supersymmetry limits the appearance of odd op-
erators; mass terms for the hypermultiplets are however allowed, in particular one could
add a tree level mass term for the Higgs multiplet. If tree level masses are set to zero, the
non-renormalization theorem guarantees that they can only be renormalized through the
generation of FI terms [8, 33] and by finite, small, non-local corrections associated to the
orbifold breaking of supersymmetry. Indeed the on-shell effect of a FI term in the limit
of rigid supersymmetry is the same as a shift in the VEV of the scalar fields in the vector
N = 2 multiplets: it shifts the hypermultiplet masses. In the supergravity embedding a
FI for a vector BM is associated to the presence of a CS term of the type A ∧ dA ∧ dB
where AM is the graviphoton. This fact suggests that the FI renormalization vanishes
beyond 1-loop. This is because CS terms are in turn associated to anomalies and cannot
be renormalized beyond 1-loop. Moreover the 1-loop renormalization of the FI term is
given by the B and graviphoton charges through a suggestively simple algebraic relation:
ξ ∝ Tr(QAQAQB) ∝ dAAB. So while from pure symmetry considerations it is not possible
to argue in favour of a vanishing FI term, nonetheless its form and renormalization proper-
ties are so restricted that it does not seem unreasonable to single out for phenomenological
study the case ξ = 0. Of course a satisfactory explanation of ξ = 0 can only come from
a more fundamental theory. One possible direction is to try to obtain our 5d model as
the low energy limit of 11d supergravity compactified on a Calabi-Yau, then the dijk and
thus the FI are calculable topological quantities.
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Note added

During the completion of the paper, ref. [34] appeared, which has some overlap with our
section 3. However, we disagree with the authors of [34] about their conclusion that the
addition of odd operators spontaneously breaks the Z2 × Z′2 orbifold symmetry.

A Two different regulators

We give here the details of the computation of the anomaly exhibiting two different regu-
lators for the three point function. The first one is a higher derivative deformation of the
fermionic kinetic term, which breaks gauge invariance, preserves the local parity defined
in section 3 and reproduces the result of eq. (21); the second one is the massive gauge
invariant Pauli-Villars which leads to a non anomalous theory with local parity explicitly
broken. The Lagrangian for a 5d fermion on S1/(Z2×Z′2) with an arbitrary jumping mass
term M η(y) is

L =
∫ 2πR

0
dy

[
− 1

4g2
FMNFMN + ψ̄ iΓM

(
∂M − iAM

)
ψ −Mη(y)ψ̄ψ

]
. (52)

Using the decomposition of eqs. (7) and (9), this gives:

L =
∑
k

ψ̄k (i6∂ −Mk) ψk +
∑
k,l,n

α+++
k l 2n

[
P+
n ψ̄kγ

µA2n
µ ψl + P−n ψ̄kγ

µγ5A2n
µ ψl

]
+
∑
k,l,n

α+−−
k l 2n

[
P+
n ψ̄k iA

2n
5 ψl − P−n ψ̄k iγ

5A2n
5 ψl

]
,

(53)

where P±n = 1
2(1± (−1)n) and the overlaps α±±±k l 2n are defined by

α±±±k l 2n =
∫ 2πR

0
dy ξ±∓k (y) ξ±∓l (y) ζ±2n(y) . (54)

The divergence of the currents is found to be

(∂µJµ)2n =
∑
k,l

α+++
k l 2n

[
P+
n ∂µ

(
ψ̄kγ

µψl
)

+ P−n ∂µ
(
ψ̄kγ

µγ5ψl
)]

(
∂5J

5
)2n =

∑
k,l

i
(
Ml + (−1)n+1Mk

)
α+++
k l 2n

[
P+
n ψ̄kψl − P−n ψ̄kγ

5ψl
]
.

(55)
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The wave functions satisfy eq. (26) and are given by

ξ+−k (y) =
1√
πR

(
1− sinMkπR

MkπR

)−1/2



sinMk(y − πR/2) , y ∈ [0, πR]

sinMk(3πR/2 − y) , y ∈ [πR, 2πR]
, (56)

ξ−+
k (y) = ξ+−k (y + πR/2) , (57)

the mass eigenvalues Mk being defined by eqs. (27) and (28). For each k there is a 4d

fermion ψk with mass Mk =
√
λ2
k +M2. In the limit M → 0 we recover the massless wave

functions of eq. (8) and the usual spectrum, while for M → +∞ the whole tower of states
becomes infinitely massive and decouples. When M < −2/(πR) one left-handed and one
right-handed state appear localized respectively on y = 0, πR/2 fixed points, becoming
massless in the limit M → −∞. This means that only a fermion with positive mass can
play the rôle of a PV regulator 8.

Now that we have shown the basic formulae, we introduce the first regulator, which
consists in replacing the fermion kinetic term in eq. (52) with

(
i 6D −Mη(y)

)→ (
i 6D −Mη(y)

)
eε
(
i 6D+Mη(y)

)(
i 6D−Mη(y)

)
(58)

where 6D = ∂M ΓM . The wave functions ξ±∓ still satisfy eq. (26) and the propagator of
each KK mode ψk gets an exponential convergence factor exp ε(q2 −M2

k ) in momentum
space. It is evident that this choice breaks explicitly 5d gauge invariance even though
it is even under the local parity defined in section 3. This procedure regulates both
the 4d loop integral and the series over the KK modes in the three point function for
a 5d fermion with (arbitrary) jumping mass. More in details, working with the KK
mode expansion, there are different diagrams which can be formed when we consider the
insertion of ∂µJµ, ∂5J

5 in the background of two gauge bosons. Depending on the external
5d momenta n1, n2, n3 (see fig. 1), any of the three vertices can be either vectorial, or axial,
or scalar or pseudoscalar. However, as previously stated, the sum of the two diagrams
of fig. 1 with an even number of γ5 is odd under the charge conjugation of eq. (12)
and therefore vanishes. For the remaining diagrams the external momenta are such that
n1 + n2 + n3 = odd, corresponding to an operator in the effective action which violates
the conservation of momentum in the fifth direction and as such can only be a boundary
operator. Dimensional analysis tells us that the naive divergence of these diagrams will
be at most linear (and not quadratic), as expected for a boundary operator or, in other
words, the sum over KK modes is convergent. This is clear in the massless limit where, if
n1 + n2 + n3 = odd, only a finite number of KK modes circulate in the loop. It is clear
from these considerations, that there will be no contribution from the background A5, as
it vanishes on the boundary. The only diagrams remaining are of the type AV V , AAA,
V AV for 〈∂µJµ〉 and PV V , PAA, SAV for 〈∂5J

5〉 (where the first label refers to the
current).

8What is actually relevant is the relative sign between the mass and Γ5. Indeed, in five dimensions

there are two inequivalent representations for Γ5 which differ by a sign. Changing this convention also

changes the sign of M which gives localized states, but of course the physics remains the same.
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Let us consider the graph AV V with external 4d momenta k1α, k2 β, fixed modes
k, l,m running in the loop and 4d loop momentum p, as depicted in fig. 1. Using the
identity (6k1 + 6k2)γ5 = (6p + 6k1 +Mk)γ5− (6p − 6k2−Ml)γ5− (Mk +Ml)γ5, the trace over
Dirac matrices can be split into three terms

Tr
[
(6k1 + 6k2)γ5 1

6p + 6k1 −Mk
γα

1
6p −Mm

γβ
1

6p − 6k2 −Ml

]
+ symm. =

− (Mk +Ml)
{

Tr
[
γ5 1
6p + 6k1 −Mk

γα
1

6p −Mm
γβ

1
6p − 6k2 −Ml

]
+ symm.

}

−
{

Tr
[
γ5γα

1
6p −Mm

γβ
1

6p − 6k2 −Ml

]
+ symm.

}

−
{

Tr
[
γ5 1
6p + 6k1 −Mk

γα
1

6p −Mm
γβ
]

+ symm.
}

(59)

The first term converges when integrated over p, even if one removes the regulator, and
gives a contribution exactly equal and opposite to the PV V insertion of ∂5J

5. The other
two, instead, would diverge linearly without the regulator, even if their sum is convergent.
The presence of the regulator is then crucial to define each term separately by removing
the routing ambiguity. More explicitly, using the regularization recipes of eq. (58), the
sum of the last two terms in eq. (59) gives an anomalous piece ∼ εαµβνk1µk2 ν which does
not depend on the mass of the modes, in the same way as it happens in 4d. Similar
considerations apply for the other diagrams AAA, V AV and PAA, SAV and resumming
over all KK modes one finds the result of eq. (21). We stress that the anomaly found does
not depend on the value of the mass M 9 and this is an indication that a massive fermion
could act as a regulator itself.

Let us now discuss the Pauli-Villars regularization. In order to be a regulator for the
theory with a massless fermion, the massive PV must resolve the ambiguity coming with
the last two terms in eq. (59). This is exactly what happens. An arbitrary shift of the
dummy variable in a linearly divergent integral corresponds to a surface finite contribution;
in our case, a shift of the loop momentum p→ p+ a in the integral of the last two terms
in eq. (59) gives a finite term which does not depend of the KK masses:

∆αβ(a) = 2iπ2 aµ

(2π)4
lim
p→∞p

2pµ
Tr
(
γ5γα 6pγβ(6k1+ 6k2)

)
p4

=
1

8π2
εαµβνaµ(k1 + k2)ν (60)

Summing over all KK modes, one gets an arbitrary piece in the AV V amplitude propor-
tional to the sum of the overlap integrals

In1 n2 n3 =
∑
k,l,m

α+++
k l 2n1

α+++
km 2n2

α+++
l m 2n3

(61)

Using the completeness relations for our basis of wave functions, without ever using their
expression, it is not difficult to show that In1 n2 n3 does not depend on the mass M but

9This extends the result of ref. [9] and shows that what found in [15] holds also for the S1/Z2 × Z′
2

orbifold.
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only on the external modes; more precisely 10

In1 n2 n3 =
a2n1a2n2a2n3

2
for n1 + n2 + n3 = odd (62)

From the previous relation it follows that the shift in the amplitude cancels when the PV
contribution is added to the physical (massless) one or, in other words, that the leading
divergence of the sum of the PV modes matches exactly the leading divergence of the
physical diagram. We conclude that a massive 5d fermion with a positive jumping mass
regulates the massless theory removing any ambiguities.

We have shown that the regulator (58) breaks the 5d gauge invariance and this causes
an anomalous term to appear. The 5d PV on the contrary preserves the gauge symmetry
and the sums of the two terms in eq. (59), regulated by the corresponding PV contribution,
now vanishes. This means that the PV V insertion of ∂5J

5 cancels exactly the AV V

insertion of ∂µJµ. Similarly happens with AAA, V AV , PAA, SAV and therefore ∂MJM =
0 so that the theory is non anomalous.

B Fujikawa’s approach and index theorems

In this appendix, we will show how one can compute anomalies in a 5d orbifold theory
using Fujikawa’s method [35], in which anomalies are interpreted as the variation of the
measure for fermions in the functional integral for the effective action, making more precise
the arguments outlined in [9].

We consider the U(1) gauge transformations of a 5d Dirac spinor ψ:

ψ → eiα(x)ψ , ψ̄ → e−iα(x)ψ̄ . (63)

The variation of the measure under an infinitesimal transformation of this type is:

DψDψ̄ → exp
[
− i

∫
d5xα(x) (Tr{ψn} 11− Tr{ψ̄n} 11)

]
DψDψ̄ , (64)

where {ψn(x)} and {ψ̄n(x)} are the eigenfunctions of D†D and DD†, where D is the Dirac
operator. On the circle, D = D† 11, contrarily to what happens for a 4d Weyl spinor and
therefore the anomaly trivially vanishes.

Consider now the case of an orbifold projection. The traces in (64) must then be
restricted to those states left invariant by the projection, by inserting the proper projection
operator. Whenever the projection acts differently on ψ and ψ̄, the anomaly will not
vanish anymore. In the simplest case of S1/Z2 generated by a reflection R : y → −y
acting chirally on the fermions,

ψ(−y) = γ5ψ(y) , ψ̄(−y) = −ψ̄(y)γ5 , (65)

10When the external modes satisfy momentum conservation, n1 + n2 = n3, then In1 n2 n3 diverges and

indeed in this case an infinite number of KK modes circulates in the loop.
11We are implicitly assuming an analytic continuation to Euclidean space, to have a Hermitian Dirac

operator.
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eq. (64) becomes:

DψDψ̄ → exp
[
− i

∫
d5xα(x)

(
Tr{ψn}

1 +Q

2
− Tr{ψ̄n}

1−Q

2

)]
DψDψ̄ , (66)

where Q = Rγ5. Since the two sets {ψn} and {ψ̄n} are equivalent, one finally finds an
anomaly given by

A(x) = −Tr{ψn}Q . (67)

As in the standard case, it is possible to give an index interpretation to this expression.
The key ingredient to do so is that Q satisfies {D,Q} = 0 and Q2 = 1. Since [D2, Q] = 0,
the two operators can be simultaneously diagonalized and one can show that only zero
modes of D2 contribute to TrQ. In fact, for any non-zero mode ψn of D2, there exists
another mode Dψn with the same D2 eigenvalue but opposite Q. Therefore we can rewrite
the integral of eq. (67) as ∫

d5xA(x) = −
(
nD

2=0
Q=+ − nD

2=0
Q=−

)
. (68)

We can write this expression as an explicit index because if we go to the basis which
diagonalizes Q we have:

Q =

(
11 0
0 −11

)
, D =

(
0 D†

+

D+ 0

)
, D2 =

(
D†

+D+ 0
0 D+D

†
+

)
, (69)

so that eq. (68) can be rewritten as a function of KerD+:∫
d5xA(x) = −(dim KerD+ − dim KerD†

+) = −index D+ . (70)

One can go further and express the integrated anomaly in terms of the gauge connection
as in the usual 4d case. To do so it is useful to relate the trace of eq. (67) to the trace
over γ5 restricted to the fixed points of R:

Tr{ψn}Q =
1
2

[δ(y) + δ(y − πR)] Tr{ψn}γ
5 . (71)

To obtain this relation, we regularize the trace in an explicitly gauge invariant way through
the 5d Dirac operator

A(x) = −
∑
k

ψ†k(x, y)Qψk(x, y) = −
∑
k

ψ†k(x, y)γ
5ψk(x,−y)

=− lim
M→∞

lim
y→x

Tr γ5 exp[−(D/M)2] δ(x − y) [δ(2y) + δ(2y − 2πR)] .
(72)

Note that with respect to the standard 4d case we have an additional piece in the Dirac
operator: Γ5(∂5− iA5). Actually this extra piece does not contribute because the trace is
non-zero only when we take γ5 with four 4d gamma-matrices coming from the expansion
of the exponential. We thus obtain

A(x) =
1
2

[δ(y) + δ(y − πR)]
−1

32π2
Fµν F̃

µν . (73)
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Note that this result differs by a factor of 3 from what we obtained in the evaluation of
triangle diagrams. This is a consequence of the fact that we have regulated the trace (72)
in a way which explicitly preserves gauge invariance with respect to the background fields.
This corresponds to an asymmetric treatment of the three legs of the triangle diagram.
To restore the symmetry one would have to add local counterterms obtaining in this way:

A(x) =
1
2

[δ(y) + δ(y − πR)]
−1

96π2
Fµν F̃

µν . (74)

We have recovered with Fujikawa’s approach the gauge anomaly on S1/Z2, originally
calculated in [15] without symmetrization (i.e. they obtained eq. (73)). The integrated
anomaly is that of a Weyl fermion: the orbifold projection leaves in fact one unpaired
massless state.

All the discussion can be applied also to the S1/(Z2×Z′2) case. Now we have to project
as in eq. (66) with respect to both the Z2s and the relevant trace turns out to be

A(x) = −1
2
Tr{ψn} (γ5R+ γ5R′) . (75)

The calculation follows precisely the previous one giving the result (21) as obtained in [9],
apart from the already discussed factor 1/3.

All the conclusions drawn in the previous sections can be reobtained in this approach.
In particular note that Fujikawa’s calculation does not tell anything about the possibility
of cancelling the anomalous variation of the fermion measure by local counterterms. As
we discussed, in the S1/(Z2 × Z′2) case the addition of a heavy fermion with a stepwise
mass gives a contribution to the calculation of the anomaly and can cancel what given
by the light states. This can be checked in this context: the anomaly here appears in
the measure of integration so that it does not change if we add a mass for the fermion12.
Usually this does not help to cancel anomalies because no fermion that is allowed by a
given symmetry to have a mass can contribute to the anomaly for that symmetry; here
this is not the case.
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