371 research outputs found
Morphology, dynamics and plasma parameters of plumes and inter-plume regions in solar coronal holes
Coronal plumes, which extend from solar coronal holes (CH) into the high
corona and - possibly - into the solar wind (SW), can now continuously be
studied with modern telescopes and spectrometers on spacecraft, in addition to
investigations from the ground, in particular, during total eclipses. Despite
the large amount of data available on these prominent features and related
phenomena, many questions remained unanswered as to their generation and
relative contributions to the high-speed streams emanating from CHs. An
understanding of the processes of plume formation and evolution requires a
better knowledge of the physical conditions at the base of CHs, in plumes and
in the surrounding inter-plume regions (IPR). More specifically, information is
needed on the magnetic field configuration, the electron densities and
temperatures, effective ion temperatures, non-thermal motions, plume
cross-sections relative to the size of a CH, the plasma bulk speeds, as well as
any plume signatures in the SW. In spring 2007, the authors proposed a study on
"Structure and dynamics of coronal plumes and inter-plume regions in solar
coronal holes" to the International Space Science Institute (ISSI) in Bern to
clarify some of these aspects by considering relevant observations and the
extensive literature. This review summarizes the results and conclusions of the
study. Stereoscopic observations allowed us to include three-dimensional
reconstructions of plumes. Multi-instrument investigations carried out during
several campaigns led to progress in some areas, such as plasma densities,
temperatures, plume structure and the relation to other solar phenomena, but
not all questions could be answered concerning the details of plume generation
process(es) and interaction with the SW.Comment: To appear on: The Astronomy and Astrophysics Review. 72 pages, 30
figure
Clinico-Neuropathological Findings in the Oldest Old from the Georgia Centenarian Study
Background: Centenarian studies are important sources for understanding of factors that contribute to longevity and healthy aging. Clinico-neuropathological finding is a key in identifying pathology and factors contributing to age-related cognitive decline and dementia in the oldest old.
Objective: To characterize the cross-sectional relationship between neuropathologies and measures of premortem cognitive performance in centenarians.
Methods: Data were acquired from 49 centenarians (≥98 years) from the Georgia Centenarian Study. Cognitive assessment from the time point closest to mortality was used (\u3c1 year for all subjects) and scores for cognitive domains were established. Neuropathologies [cerebral atrophy, ventricular dilation, atherosclerosis, cerebral amyloid angiopathy (CAA), Lewy bodies, hippocampal sclerosis (HS), hippocampal TDP-43 proteinopathy, neuritic plaque (NP) and neurofibrillary tangle (NFT) counts, Braak staging, and National Institute on Aging-Reagan Institute (NIARI) criteria for the neuropathological diagnosis of Alzheimer’s disease (AD)] were compared among subjects with different ratings of dementia. Linear regression was applied to evaluate the association between cognitive domain scores and neuropathologies.
Results: Wide ranges of AD-type neuropathological changes were observed in both non-demented and demented subjects. Neocortical NFT and Braak staging were related to clinical dementia rating. Neocortical NFT and NP, Braak and NIARI staging, cerebral and ventricular atrophy, HS, CAA, and TDP-43 proteinopathy were differentially associated with poor performance in multiple cognitive domains and activities of daily living.
Conclusion: AD-type pathology was associated with severe dementia and poor cognition but was not the only variable that explained cognitive impairment, indicating the complexity and heterogeneity of pathophysiology of dementia in the oldest old
The effectiveness of emergency obstetric referral interventions in developing country settings : a systematic review
Peer reviewedPublisher PD
Magnetic and Electrical Properties of Ordered 112-type Perovskite LnBaCoMnO5+\delta (Ln = Nd, Eu)
Investigation of the oxygen-deficient 112-type ordered oxides of the type
LnBaCoMnO5+\delta (Ln = Nd, Eu) evidences certain unusual magnetic behavior at
low temperatures, compared to the LnBaCo2O5+\delta cobaltites. One observes
that the substitution of manganese for cobalt suppresses the ferromagnetic
state and induces strong antiferromagnetic interactions. Importantly,
NdBaCoMnO5.9 depicts a clear paramagnetic to antiferromagnetic type transition
around 220 K, whereas for EuBaCoMnO5.7 one observes an unusual magnetic
behavior below 177 K which consists of ferromagnetic regions embedded in an
antiferromagnetic matrix. The existence of two sorts of crystallographic sites
for Co/Mn and their mixed valence states favor the ferromagnetic interaction
whereas antiferromagnetism originates from the Co3+-O-Co3+ and Mn4+-O-Mn4+
interactions. Unlike the parent compounds, the present Mn-substituted phases do
not exhibit prominent magnetoresistance effects in the temperature range
75-400K.Comment: 23 pages including figure
Changed epitopes drive the antigenic drift for influenza A (H3N2) viruses
<p>Abstract</p> <p>Background</p> <p>In circulating influenza viruses, gradually accumulated mutations on the glycoprotein hemagglutinin (HA), which interacts with infectivity-neutralizing antibodies, lead to the escape of immune system (called antigenic drift). The antibody recognition is highly correlated to the conformation change on the antigenic sites (epitopes), which locate on HA surface. To quantify a changed epitope for escaping from neutralizing antibodies is the basis for the antigenic drift and vaccine development.</p> <p>Results</p> <p>We have developed an epitope-based method to identify the antigenic drift of influenza A utilizing the conformation changes on epitopes. A changed epitope, an antigenic site on HA with an accumulated conformation change to escape from neutralizing antibody, can be considered as a "key feature" for representing the antigenic drift. According to hemagglutination inhibition (HI) assays and HA/antibody complex structures, we statistically measured the conformation change of an epitope by considering the number of critical position mutations with high genetic diversity and antigenic scores. Experimental results show that two critical position mutations can induce the conformation change of an epitope to escape from the antibody recognition. Among five epitopes of HA, epitopes A and B, which are near to the receptor binding site, play a key role for neutralizing antibodies. In addition, two changed epitopes often drive the antigenic drift and can explain the selections of 24 WHO vaccine strains.</p> <p>Conclusions</p> <p>Our method is able to quantify the changed epitopes on HA for predicting the antigenic variants and providing biological insights to the vaccine updates. We believe that our method is robust and useful for studying influenza virus evolution and vaccine development.</p
Thin Polymer Brush Decouples Biomaterial's Micro-/Nano-Topology and Stem Cell Adhesion
Surface morphology and chemistry of polymers used as biomaterials, such as tissue engineering scaffolds, have a strong influence on the adhesion and behavior of human mesenchymal stem cells. Here we studied semicrystalline poly(ε-caprolactone) (PCL) substrate scaffolds, which exhibited a variation of surface morphologies and roughness originating from different spherulitic superstructures. Different substrates were obtained by varying the parameters of the thermal processing, i.e. crystallization conditions. The cells attached to these polymer substrates adopted different morphologies responding to variations in spherulite density and size. In order to decouple substrate topology effects on the cells, sub-100 nm bio-adhesive polymer brush coatings of oligo(ethylene glycol) methacrylates were grafted from PCL and functionalized with fibronectin. On surfaces featuring different surface textures, dense and sub-100 nm thick brush coatings determined the response of cells, irrespective to the underlying topology. Thus, polymer brushes decouple substrate micro-/nano-topology and the adhesion of stem cells
Facile formation of highly mobile supported lipid bilayers on surface-quaternized pH-responsive polymer brushes
Poly(2-dimethylamino)ethyl methacrylate) (PDMA) brushes are grown from planar substrates via surface atom transfer radical polymerization (ATRP). Quaternization of these brushes is conducted using 1-iodooctadecane in n-hexane, which is a non-solvent for PDMA. Ellipsometry, AFM, and water contact angle measurements show that surface-confined quaternization occurs under these conditions, producing pH-responsive brushes that have a hydrophobic upper surface. Systematic variation of the 1-iodooctadecane concentration and reaction time enables the mean degree of surface quaternization to be optimized. Relatively low degrees of surface quaternization (ca. 10 mol % as judged by XPS) produce brushes that enable the formation of supported lipid bilayers, with the hydrophobic pendent octadecyl groups promoting in situ rupture of lipid vesicles. Control experiments confirm that quaternized PDMA brushes prepared in a good brush solvent (THF) produce non-pH-responsive brushes, presumably because the pendent octadecyl groups form micelle-like physical cross-links throughout the brush layer. Supported lipid bilayers (SLBs) can also be formed on the non-quaternized PDMA precursor brushes, but such structures proved to be unstable to small changes in pH. Thus, surface quaternization of PDMA brushes using 1-iodooctadecane in n-hexane provides the best protocol for the formation of robust SLBs. Fluorescence recovery after photobleaching (FRAP) studies of such SLBs indicate diffusion coefficients (2.8 ± 0.3 μm s–1) and mobile fractions (98 ± 2%) that are comparable to the literature data reported for SLBs prepared directly on planar glass substrates
Polypeptide-grafted macroporous polyHIPE by surface-initiated N-Carboxyanhydride (NCA) polymerization as a platform for bioconjugation
A new class of functional macroporous monoliths from polymerized high internal phase emulsion (polyHIPE) with tunable surface functional groups was developed by direct polypeptide surface grafting. In the first step, amino-functional polyHIPEs were obtained by the addition of 4-vinylbenzyl or 4-vinylbenzylphthalimide to the styrenic emulsion and thermal radical polymerization. The obtained monoliths present the expected open-cell morphology and a high surface area. The incorporated amino group was successfully utilized to initiate the ring-opening polymer-
ization of benzyl-L-glutamate N-carboxyanhydride (BLG NCA) and benzyloxycarbonyl-L-lysine (Lys(Z)) NCA, which resulted in a dense homogeneous coating of polypeptides throughout the internal polyHIPE surfaces as confirmed by SEM and FTIR analysis. The amount of polypeptide grafted to the polyHIPE surfaces could be modulated by varying the initial ratio of amino acid NCA to amino-functional polyHIPE. Subsequent removal of the polypeptide protecting groups yielded highly functional polyHIPE-g-poly(glutamic acid) and polyHIPE-g- poly(lysine). Both types of polypeptide-grafted monoliths responded to pH by changes in their hydrohilicity. The possibility to use the high density of function (−COOH or −NH2) for secondary reaction was demonstrated by the successful bioconjugation of enhanced green fluorescent protein (eGFP) and fluorescein isocyanate (FITC) on the polymer 3D-scaffold surface. The amount of eGFP and FITC conjugated to the polypeptide-grafted polyHIPE was significantly higher than to the amino- functional polyHIPE, signifying the advantage of polypeptide grafting to achieve highly functional polyHIPEs
The efficacy and safety of prokinetic agents in critically ill patients receiving enteral nutrition: a systematic review and meta-analysis of randomized trials.
BACKGROUND: Intolerance to enteral nutrition is common in critically ill adults, and may result in significant morbidity including ileus, abdominal distension, vomiting and potential aspiration events. Prokinetic agents are prescribed to improve gastric emptying. However, the efficacy and safety of these agents in critically ill patients is not well-defined. Therefore, we conducted a systematic review and meta-analysis to determine the efficacy and safety of prokinetic agents in critically ill patients. METHODS: We searched MEDLINE, EMBASE, and Cochrane Library from inception up to January 2016. Eligible studies included randomized controlled trials (RCTs) of critically ill adults assigned to receive a prokinetic agent or placebo, and that reported relevant clinical outcomes. Two independent reviewers screened potentially eligible articles, selected eligible studies, and abstracted pertinent data. We calculated pooled relative risk (RR) for dichotomous outcomes and mean difference for continuous outcomes, with the corresponding 95 % confidence interval (CI). We assessed risk of bias using Cochrane risk of bias tool, and the quality of evidence using grading of recommendations assessment, development, and evaluation (GRADE) methodology. RESULTS: Thirteen RCTs (enrolling 1341 patients) met our inclusion criteria. Prokinetic agents significantly reduced feeding intolerance (RR 0.73, 95 % CI 0.55, 0.97; P = 0.03; moderate certainty), which translated to 17.3 % (95 % CI 5, 26.8 %) absolute reduction in feeding intolerance. Prokinetics also reduced the risk of developing high gastric residual volumes (RR 0.69; 95 % CI 0.52, 0.91; P = 0.009; moderate quality) and increased the success of post-pyloric feeding tube placement (RR 1.60, 95 % CI 1.17, 2.21; P = 0.004; moderate quality). There was no significant improvement in the risk of vomiting, diarrhea, intensive care unit (ICU) length of stay or mortality. Prokinetic agents also did not significantly increase the rate of diarrhea. CONCLUSION: There is moderate-quality evidence that prokinetic agents reduce feeding intolerance in critically ill patients compared to placebo or no intervention. However, the impact on other clinical outcomes such as pneumonia, mortality, and ICU length of stay is unclear
U–Pb Zircon geochronology of the Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia
New U–Pb zircon data from metagranites and metavolcanic rocks of the Schist-Graywacke Complex Domain and the Schistose Domain of Galicia Tras-os-Montes Zone from central and NW Iberia contribute to constrain the timing of the Cambro-Ordovician magmatism from Central Iberian and Galicia Tras-os-Montes Zones which occurred between 498 and 462 Ma. The crystallization ages of the metagranites and metavolcanic rocks from the northern Schist-Graywacke Complex Domain are as follows: (a) in west Salamanca, 489 ± 5 Ma for Vitigudino, 486 ± 6 Ma for Fermoselle and 471 ± 7 Ma for Ledesma; (b) in northern Gredos, 498 ± 4 Ma for Castellanos, 492 ± 4 Ma for San Pelayo and 488 ± 3 Ma for Bercimuelle; (c) in Guadarrama, 490 ± 5 Ma for La Estacion I, 489 ± 9 Ma for La Canada, 484 ± 6 Ma for Vegas de Matute (leucocratic), 483 ± 6 Ma for El Cardoso, 482 ± 8 Ma for La Morcuera, 481 ± 9 Ma for Buitrago de Lozoya, 478 ± 7 Ma for La Hoya, 476 ± 5 Ma for Vegas de Matute (melanocratic), 475 ± 5 Ma for Riaza, 473 ± 8 Ma for La Estacion II and 462 ± 11 Ma for La Berzosa; and (d) in Toledo, 489 ± 7 Ma for Mohares and 480 ± 8 Ma for Polan. The crystallization ages of the metagranites from the Schistose Domain of Galicia Tras-os-Montes Zone are 497 ± 6 Ma for Laxe, 486 ± 8 Ma for San Mamede, 482 ± 7 Ma for Bangueses, 481 ± 5 Ma for Noia, 480 ± 10 for Rial de Sabucedo, 476 ± 9 Ma for Vilanova, 475 ± 6 Ma for Pontevedra, 470 ± 6 Ma for Cherpa and 462 ± 8 Ma for Bande.This magmatism is characterized by an average isotopic composition of (87Sr/86Sr)485Ma ≈ 0.712, (eNd)485Ma ≈ -4.1 and (TDM) ≈ 1.62 Ga, and a high zircon inheritance, composed of Ediacaran–Early Cambrian (65 %) and, to a lesser extent, Cryogenian, Tonian, Mesoproterozoic, Orosirian and Archean pre-magmatic cores. Combining our geochronological and isotopic data with others of similar rocks from the European Variscan Belt, it may be deduced that Cambro-Ordovician magmas from this belt were mainly generated by partial melting of Ediacaran–Early Cambrian igneous rocks
- …