2,923 research outputs found

    SEI power source alternatives for rovers and other multi-kWe distributed surface applications

    Get PDF
    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined

    Low energy magnetic excitations of the Mn_{12}-acetate spin cluster observed by neutron scattering

    Full text link
    We performed high resolution diffraction and inelastic neutron scattering measurements of Mn_{12}-acetate. Using a very high energy resolution, we could separate the energy levels corresponding to the splitting of the lowest S multiplet. Data were analyzed within a single spin model (S=10 ground state), using a spin Hamiltonian with parameters up to 4^{th} order. The non regular spacing of the transition energies unambiguously shows the presence of high order terms in the anisotropy (D= -0.457(2) cm^{-1}, B_4^0 = -2.33(4) 10^{-5}cm^{-1}). The relative intensity of the lowest energy peaks is very sensitive to the small transverse term, supposed to be mainly responsible for quantum tunneling. This allows an accurate determination of this term in zero magnetic field (B_4^4 = \pm 3.0(5) 10^{-5} cm^{-1}). The neutron results are discussed in view of recent experiments and theories.Comment: 4 pages ? 3 figures, submitted to Physical Review Lette

    Effect of chromium doping on high temperature tribological properties of silicon-doped diamond-like carbon films

    Get PDF
    Amorphous carbon films were deposited by means of closed-field unbalanced magnetron sputtering (CFUBMS). The silicon content was fixed at 1.3 at. %, while the chromium content was increased by modification of the current applied to the chromium magnetrons, with two doping levels, 0.3 and 2.7 at. %. Both, hardness and thermal stability were found to decrease as result of increasing chromium. Ball-on-disk tests revealed friction coefficients of 0.06 at room temperature with similar specific wear rate in all films (~4 × 10−13 m3 N−1 m−1). Increasing annealing temperatures were found to reduce the coefficient of friction compared to room temperature values, while increasing the specific wear rate for all films

    Nanoparticle colloidal stability in cell culture media and impact on cellular interactions

    Get PDF
    Nanomaterials are finding increasing use for biomedical applications such as imaging, diagnostics, and drug delivery. While it is well understood that nanoparticle (NP) physico-chemical properties can dictate biological responses and interactions, it has been difficult to outline a unifying framework to directly link NP properties to expected in vitro and in vivo outcomes. When introduced to complex biological media containing electrolytes, proteins, lipids, etc., nanoparticles (NPs) are subjected to a range of forces which determine their behavior in this environment. One aspect of NP behavior in biological systems that is often understated or overlooked is aggregation. NP aggregation will significantly alter in vitro behavior (dosimetry, NP uptake, cytotoxicity), as well as in vivo fate (pharmacokinetics, toxicity, biodistribution). Thus, understanding the factors driving NP colloidal stability and aggregation is paramount. Furthermore, studying biological interactions with NPs at the nanoscale level requires an interdisciplinary effort with a robust understanding of multiple characterization techniques. This review examines the factors that determine NP colloidal stability, the various efforts to stabilize NP in biological media, the methods to characterize NP colloidal stability in situ, and provides a discussion regarding NP interactions with cell

    Slitrk5 Mediates BDNF-Dependent TrkB Receptor Trafficking and Signaling

    Get PDF
    SummaryRecent studies in humans and in genetic mouse models have identified Slit- and NTRK-like family (Slitrks) as candidate genes for neuropsychiatric disorders. All Slitrk isotypes are highly expressed in the CNS, where they mediate neurite outgrowth, synaptogenesis, and neuronal survival. However, the molecular mechanisms underlying these functions are not known. Here, we report that Slitrk5 modulates brain-derived neurotrophic factor (BDNF)-dependent biological responses through direct interaction with TrkB receptors. Under basal conditions, Slitrk5 interacts primarily with a transsynaptic binding partner, protein tyrosine phosphatase δ (PTPδ); however, upon BDNF stimulation, Slitrk5 shifts to cis-interactions with TrkB. In the absence of Slitrk5, TrkB has a reduced rate of ligand-dependent recycling and altered responsiveness to BDNF treatment. Structured illumination microscopy revealed that Slitrk5 mediates optimal targeting of TrkB receptors to Rab11-positive recycling endosomes through recruitment of a Rab11 effector protein, Rab11-FIP3. Thus, Slitrk5 acts as a TrkB co-receptor that mediates its BDNF-dependent trafficking and signaling

    Foot-and-Mouth Disease Infection Dynamics in Contact-Exposed Pigs Are Determined by the Estimated Exposure Dose

    Get PDF
    The quantitative relationship between the exposure dose of foot-and-mouth disease virus (FMDV) and subsequent infection dynamics has been demonstrated through controlled inoculation studies in various species. However, similar quantitation of viral doses has not been achieved during contact exposure experiments due to the intrinsic difficulty of measuring the virus quantities exchanged between animals. In the current study, novel modeling techniques were utilized to investigate FMDV infection dynamics in groups of pigs that had been contact-exposed to FMDV-infected donors shedding varying levels of virus, as well as in pigs inoculated via the intra-oropharyngeal (IOP) route. Estimated virus exposure doses were modeled and were found to be statistically significantly associated with the dynamics of FMDV RNA detection in serum and oropharyngeal fluid (OPF), and with the time to onset of clinical disease. The minimum estimated shedding quantity in OPF that defined infectiousness of donor pigs was 6.55 log10 genome copy numbers (GCN)/ml (95% CI 6.11, 6.98), which delineated the transition from the latent to infectious phase of disease which occurred during the incubation phase. This quantity corresponded to a minimum estimated exposure dose of 5.07 log10 GCN/ml (95% CI 4.25, 5.89) in contact-exposed pigs. Thus, we demonstrated that a threshold quantity of FMDV detection in donor pigs was necessary in order to achieve transmission by direct contact. The outcomes from this investigation demonstrate that variability of infection dynamics which occurs during the progression of FMD in naturally exposed pigs can be partially attributed to variations in exposure dose. Moreover, these modeling approaches for dose-quantitation may be retrospectively applied to contact-exposure experiments or field scenarios. Hence, robust information could be incorporated into models used to evaluate FMD spread and control

    A rational and iterative process for targeted nanoparticle design and validation

    Get PDF
    The lack of understanding of fundamental nano-bio interactions, and difficulties in designing particles stable in complex biological environments are major limitations to their translation into biomedical clinical applications. Here we present a multi- parametric approach to fully characterize targeted nanoparticles, and emphasizes the significant effect that each detail in the synthetic process can have on downstream in vitro results. Through an iterative process, particles were designed, synthesized and tested for physico-chemical and bio-interactive properties which allowed the optimization of nanoparticle functionality. Taken together all interative steps demonstrate that we have synthesized a multifunctional gold nanoparticles that can detect ERBB2-positive breast cancer cells while showing stealth-like behavior toward ERBB2-negative cells and excellent physicochemical stability

    Gene-environment interaction analysis of redox-related metals and genetic variants with plasma metabolic patterns in a general population from Spain: The Hortega Study

    Get PDF
    Background: Limited studies have evaluated the joint influence of redox-related metals and genetic variation on metabolic pathways. We analyzed the association of 11 metals with metabolic patterns, and the interacting role of candidate genetic variants, in 1145 participants from the Hortega Study, a population-based sample from Spain. Methods: Urine antimony (Sb), arsenic, barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), molybdenum (Mo) and vanadium (V), and plasma copper (Cu), selenium (Se) and zinc (Zn) were measured by ICP-MS and AAS, respectively. We summarized 54 plasma metabolites, measured with targeted NMR, by estimating metabolic principal components (mPC). Redox-related SNPs (N = 291) were measured by oligo-ligation assay. Results: In our study, the association with metabolic principal component (mPC) 1 (reflecting non-essential and essential amino acids, including branched chain, and bacterial co-metabolism versus fatty acids and VLDL subclasses) was positive for Se and Zn, but inverse for Cu, arsenobetaine-corrected arsenic (As) and Sb. The association with mPC2 (reflecting essential amino acids, including aromatic, and bacterial co-metabolism) was inverse for Se, Zn and Cd. The association with mPC3 (reflecting LDL subclasses) was positive for Cu, Se and Zn, but inverse for Co. The association for mPC4 (reflecting HDL subclasses) was positive for Sb, but inverse for plasma Zn. These associations were mainly driven by Cu and Sb for mPC1; Se, Zn and Cd for mPC2; Co, Se and Zn for mPC3; and Zn for mPC4. The most SNP-metal interacting genes were NOX1, GSR, GCLC, AGT and REN. Co and Zn showed the highest number of interactions with genetic variants associated to enriched endocrine, cardiovascular and neurological pathways. Conclusions: Exposures to Co, Cu, Se, Zn, As, Cd and Sb were associated with several metabolic patterns involved in chronic disease. Carriers of redox-related variants may have differential susceptibility to metabolic alterations associated to excessive exposure to metals.This work was supported by the Strategic Action for Research in Health sciences [CP12/03080, PI15/00071, PI10/0082, PI13/01848, PI14/00874, PI16/01402, PI21/00506 and PI11/00726], CIBER Fisio patología Obesidad y Nutrición (CIBEROBN) (CIBER-02-08-2009, CB06/03 and CB12/03/30,016), the State Agency for Research (PID2019-108973RB- C21 and C22), the Valencia Government (GRUPOS 03/101; PROMETEO/2009/029 and ACOMP/2013/039, IDI FEDER/2021/072 and GRISOLIAP/2021/119), the Castilla-Leon Government (GRS/279/A/08) and European Network of Excellence Ingenious Hypercare (EPSS-037093) from the European Commission. The Strategic Action for Research in Health sciences, CIBERDEM and CIBEROBN are initiatives from Carlos III Health Institute Madrid and cofunded with European Funds for Regional Development (FEDER). The State Agency for Research and Carlos III Health Institute belong to the Spanish Ministry of Science and Innovation. ADR received the support of a fellowship from “la Caixa” Foundation (ID 100010434) (fellowship code “LCF/BQ/DR19/11740016”). MGP received the support of a fellowship from “la Caixa” Foundation (ID 100010434, fellowship code LCFLCF/BQ/DI18/11660001). The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.S
    corecore