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SUMMARY

Recent studies in humans and in genetic mouse
models have identified Slit- and NTRK-like family
(Slitrks) as candidate genes for neuropsychiatric dis-
orders. All Slitrk isotypes are highly expressed in the
CNS,where theymediateneurite outgrowth, synapto-
genesis, and neuronal survival. However, themolecu-
lar mechanisms underlying these functions are not
known. Here, we report that Slitrk5 modulates brain-
derived neurotrophic factor (BDNF)-dependent bio-
logical responses through direct interaction with
TrkB receptors. Under basal conditions, Slitrk5 inter-
acts primarily with a transsynaptic binding partner,
protein tyrosine phosphatase d (PTPd); however,
upon BDNF stimulation, Slitrk5 shifts to cis-interac-
tions with TrkB. In the absence of Slitrk5, TrkB has a
reduced rate of ligand-dependent recycling and
altered responsiveness to BDNF treatment. Struc-
tured illumination microscopy revealed that Slitrk5
mediates optimal targeting of TrkB receptors to
Rab11-positive recyclingendosomes through recruit-
ment of a Rab11 effector protein, Rab11-FIP3. Thus,
Slitrk5 acts as a TrkB co-receptor that mediates its
BDNF-dependent trafficking and signaling.
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INTRODUCTION
Members of the Slit- and NTRK-like family (Slitrks) are type 1

transmembraneproteins that localize to and function atCNSsyn-

apses where they mediate synapse formation through transsy-

naptic interactions of their ectodomains with presynaptic binding

partners (Linhoff et al., 2009; Takahashi et al., 2012; Yim et al.,

2013). Their cytoplasmic tails, larger than those of other well-

studied synaptic adhesion molecules (SAMs), e.g., neurexins,

neuroligins, leucine-rich repeat transmembranes (LRRTMs), syn-

aptic cell adhesion molecules (SynCAMs), N-cadherins, and L1

adhesion molecules (Aruga and Mikoshiba, 2003; Proenca

et al., 2011), suggest functional interactionswith othermolecules.

Slitrks have structural and functional similarity to tropomyosin

receptor kinase (Trk) neurotrophin receptors. They contain N-ter-

minal leucine-rich repeat (LRR) domains and intracellular tyro-

sine-based motifs similar to those found in TrkA, TrkB, and

TrkC. Furthermore, Slitrks mediate biological functions similar

to Trk receptors, including neurite outgrowth and dendritic elab-

oration, synapse formation, and neuronal survival (Aruga andMi-

koshiba, 2003; Ko, 2012; Proenca et al., 2011; Yim et al., 2013). It

is well established that Trk receptors mediate this broad range of

functions through their selective binding to three major ligands:

nerve growth factor (NGF), brain-derived neurotrophic factor

(BDNF), and neurotrophin-3 (NT-3) (Chao, 2003).

A key question is how such a limited repertoire of neurotro-

phins and Trk receptors mediates such a diverse array of
nc.
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biological actions. In the peripheral nervous system (PNS), the

basic strategy to generate signaling diversity has been eluci-

dated. In sensory and sympathetic neurons, Trk receptors are

expressed at high levels and form combinatorial complexes

with their co-receptor p75NTR at the plasma membrane. These

interactions increase their affinity and selectivity for specific neu-

rotrophins (Benedetti et al., 1993; Hempstead et al., 1991; Kuru-

villa et al., 2004; Lee et al., 1994). In contrast, in the adult CNS,

the strategy underlying signaling diversity remains essentially

unknown. Whereas TrkB and TrkC receptors are expressed

at high levels in the CNS, p75NTR has a limited distribution,

restricted primarily to the basal forebrain (Huang and Reichardt,

2003; Lee et al., 2001). Hence, it is likely that regulation of Trk

function in the CNS involves alternative molecules.

Slitrks are excellent candidates to perform such regulatory

functions. Of the six Slitrk family members expressed in the

CNS (Aruga and Mikoshiba, 2003; Shmelkov et al., 2010), Slitrk5

provides the more compelling links with the neurotrophin sys-

tem. Slitrk5�/� mice display altered anatomical and neuronal

morphological phenotypes in the striatum similar to those

observed in the striatum of mice with genetic deficiencies in

BDNF or TrkB (Emx-BDNF, Tau-BDNF, Dlx5/6-TrkB, and Bf1-

BDNF knockout [KO] mice) (Baquet et al., 2004; Baydyuk et al.,

2011; Li et al., 2012; Rauskolb et al., 2010; Shmelkov et al.,

2010). This raises the intriguing question of whether in the CNS

Slitrk5 functions through direct interaction and modulation of

the neurotrophin system. Here, we present mechanistic evi-

dence demonstrating that Slitrk5 acts as a co-receptor of TrkB

that modulates its postendocytic recycling to facilitate BDNF-

dependent signaling responses. Our study identifies a key regu-

lator of the diverse array of BDNF functions in the CNS.

RESULTS

Slitrk5 Interacts with TrkB Receptors
To determine whether Slitrk5 and TrkB receptors are physically

associated, we carried out co-immunoprecipitation studies in

cell lines and primary neurons. Studies using HEK293T cells

transfected with FLAG-tagged TrkB and wild-type (WT) Slitrk5

plasmids (Figure 1A) or HEK293 cells stably expressing TrkB

(HEK293-TrkB) transfected with GFP-tagged Slitrk5 (Figure 1B)

clearly demonstrated that the two proteins interact. Furthermore,

co-immunoprecipitation studies in brain lysates using anti-TrkB

antibodies or anti-Slitrk5 antibodies demonstrated that endoge-

nous Slitrk5 and TrkB interact in neurons (Figures 1C and S1E).

This interaction is specific, as it was not observed for other Slitrk

members (Slitrk1–3) (Figure 1D), or for the other major CNS neu-

rotrophin receptor, TrkC, in primary cultured neurons (Figures 1E

and S1E). To map the Slitrk5 and TrkB domains that mediate

their interaction, we utilized a chimera-based approach. The

extracellular domain of Slitrk5 encodes two LRR domains (Fig-

ure 1F). LRR domains often mediate protein-protein interactions

(Gay et al., 1991; Mandai et al., 2009). We swapped the extra-

cellular domains of Slitrk5 with the corresponding domains

of another Slitrk (Slitrk1) (Figure 1F). After transfection of

HEK293-TrkB cells with the chimeric Slitrk5 constructs, their

interaction with TrkB was assessed by co-immunoprecipitation

and immunoblot analyses. These studies demonstrated that

the interaction of Slitrk5 with TrkB was mediated by its first
Devel
LRR (LRR1) domain (Figure 1F). Complementary studies with

chimeras between TrkB and TrkC demonstrated that binding

of TrkB with Slitrk5 is mediated by its single LRR domain (Fig-

ure 1G). Taken together, these studies demonstrate that Slitrk5

and TrkB interact specifically via their extracellular LRRdomains.

Next, we carried out co-immunoprecipitation experiments to

examine whether the interaction between Slitrk5 and TrkB is

modulated by BDNF-dependent TrkB activation. These experi-

ments showed that, compared to the control condition (10%

fetal bovine serum [FBS]; Figures 1A and 1B), serum starvation

(0% FBS) significantly reduced the basal interaction between

FLAG-tagged Slitrk5 and TrkB (Figure 1H). In contrast, upon

BDNF stimulation, the interaction between Slitrk5 and TrkB

was significantly increased, and was blocked by pretreatment

with K252a, an inhibitor of Trk kinases (Figure 1H). These studies

suggest that Slitrk5 optimally interacts with a TrkB receptor com-

plex that is activated by BDNF.

We next considered whether Slitrk5 and TrkB receptors co-

localized within neurons. To test this hypothesis, we examined

the subcellular localization of endogenous Slitrk5 and TrkB re-

ceptors in cultured striatal neurons using structured illumination

microscopy (SIM), a form of high-resolution microscopy that

uses a high-frequency striped pattern of light to illuminate the

sample in multiple angles to enhance image resolution up to

85 nm (Gustafsson, 2000). In untreated striatal neurons, TrkB

and Slitrk5 localized separately in dendrites, visualized with

microtubule-associated protein 2 (MAP2) staining (Figure 1I,

left panels; quantified in Figure 1J). In contrast, after BDNF treat-

ment, TrkB receptors significantly co-localized with Slitrk5 in

enlarged punctate structures, presumably reflecting its presence

in endosomes (Figure 1I, right panels; quantified in Figures 1J

and S1F). The co-localization of TrkB and Slitrk5 was visualized

with co-localization highlighter (ImageJ, NIH), as well as with 3D

reconstruction (IMARIS, Bitplane). Together, these interaction

and immunocytochemical studies suggest that Slitrk5 and

TrkB receptors interact in a BDNF-dependent manner.

BDNF Shifts Slitrk5 Binding from PTPd to TrkB
Receptors
Recently, one of the Slitrk isotypes, Slitrk3, was reported to

mediate inhibitory synapse formation through transsynaptic in-

teractions with presynaptic receptor-type protein tyrosine phos-

phatase d (PTPd) (Takahashi et al., 2012). Takahashi et al. (2012)

also showed that Slitrk5 was capable of interacting with PTPd.

Therefore, we investigated whether the BDNF-induced cis-inter-

action of Slitrk5 with TrkB disrupts the trans-interaction of Slitrk5

with PTPd (Figure 2). First, utilizing a binding assay in which we

exposed HEK293T cells expressing full-length or mutant Slitrk5

to soluble purified PTPd ectodomain fused to the Fc region of hu-

man immunoglobulin (PTPd-Fc), we showed that Slitrk5 binds

PTPd through its LRR1 domain (Figures 2A and 2B). Next, using

a heterophilic cell adhesion assay (Fogel et al., 2007), we tested

whether the presence of TrkB receptors in cells expressing

Slitrk5 affected the trans-interaction of Slitrk5 with PTPd. Briefly,

to mimic cis- and trans-interactions of Slitrk5 with TrkB and

PTPd, respectively, in the neuronal synapse, we co-cultured

HEK293 cells co-expressing FLAG-Slitrk5 and TrkB with

HEK293T cells expressing hemagglutinin (HA)-PTPd. Surface

proteins were labeled with respective antibodies at the
opmental Cell 33, 690–702, June 22, 2015 ª2015 Elsevier Inc. 691



Figure 1. TrkB Receptors Interact and Co-localize with Slitrk5

(A) Interaction between TrkB receptors and Slitrk5 was assessed in HEK293T cells overexpressing cDNAs encoding FLAG-TrkB, Slitrk5, and empty vector. Cell

lysates were immunoprecipitated with anti-FLAG antibodies and immunoblotted with anti-Slitrk5 antibodies.

(B) Interaction between TrkB receptors and Slitrk5 was assessed in HEK293-TrkB cells. Lysates fromSlitrk5-GFP or empty vector-transfectedHEK293-TrkB cells

were immunoprecipitated with anti-GFP antibodies and immunoblotted with anti-TrkB antibody.

(C) Endogenous association of Slitrk5 and TrkB. Mouse whole-brain lysates (2 months old) were subjected to immunoprecipitation with anti-TrkB antibody

(Millipore) or control IgG. The immune protein complex was then eluted, and TrkB and Slitrk5 were detected by immunoblotting.

(D and E) Interaction between TrkB and Slitrk5 is specific. (D) Interaction between TrkB and Slitrk family members. FLAG-tagged Slitrk family isotypes were

expressed in HEK293-TrkB cells. Cell lysates were immunoprecipitated with anti-TrkB antibodies (Millipore) and immunoblotted with anti-FLAG (M2) antibodies.

(E) Dissociated embryonic day 16 (E16) mouse cortical neurons were electroporated (Amaxa) with FLAG-TrkB or FLAG-TrkC. At DIV6, cell lysates were

precipitated with anti-FLAG (M2) antibodies and immunoblotted with anti-Slitrk5 antibodies.

(F) First LRR domain of Slitrk5 mediates TrkB binding. HEK293-TrkB cells were transfected with FLAG-tagged WT Slitrk5, chimeric FLAG-LRR1-domain-

swapped Slitrk5 (FLAG-LRR1(S1) Slitrk5), and LRR2-domain-swapped Slitrk5 [FLAG-LRR2(S1) Slitrk5] or empty vector. Cell lysates were precipitated with anti-

FLAG (M2) antibodies and immunoblotted with anti-TrkB antibodies (Millipore). Schematic representation of chimeric Slitrk5 mutants shown on the right.

(G) LRR domain of TrkB mediates Slitrk5 binding. Dissociated E16 mouse cortical neurons were transfected with FLAG-tagged WT TrkB, LRR domain-swapped

TrkB (FLAG-LRR(C) TrkB), and IgG1 domain-swapped TrkB [FLAG-IgG1(C) TrkB] or empty vector. At DIV6, cell lysates were immunoprecipitated with anti-FLAG

antibodies and immunoblotted with anti-Slitrk5. Schematic representation of chimeric TrkB mutants shown on the right.

(H) BDNF-dependent and TrkB kinase activity-dependent binding of TrkB and Slitrk5. After transfection of FLAG-tagged Slitrk5 into HEK293-TrkB cells, cells

were pretreated with DMSO or K252a for 30 min to inhibit kinase activity of TrkB after overnight serum starvation. Cells were treated with or without BDNF, and

their binding was examined by immunoprecipitation with anti-TrkB antibodies followed by immunoblotting with anti-FLAG antibodies.

(I) TrkB receptors co-localize with Slitrk5 in a BDNF-dependent manner. DIV6 striatal neurons were treated with or without BDNF (25 ng/ml) for 30 min after

incubating with anti-TrkB antibody to specifically label surface TrkB. Endogenous Slitrk5 and MAP2 were visualized with specific antibodies after fixation and

permeabilization. Super-resolution images were acquired using a Nikon N-SIM structured illumination microscope. The co-localization of TrkB and Slitrk5 was

presented using co-localization highlighter (ImageJ) and 3D reconstruction (IMARIS) to show more convincing co-localization signals.

(J) Histogram showing mean Manders’ coefficients for co-localization of TrkB and Slitrk5 (n = 20 for each condition). High Manders’ coefficients indicate better

co-localization of TrkB with Slitrk5. Results are means ± SEM from three independent experiments. 20–30 neurons were analyzed per condition per experiment.

*p < 0.05 significantly different from control condition (Student’s t test).
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Figure 2. PTPd and TrkB Compete for Bind-

ing to Slitrk5

(A) Slitrk5 binds PTPd through LRR1. Soluble pu-

rified PTPd-Fc chimeras were added to HEK293T

cells expressing WT and indicated deletion mu-

tants of Slitrk5, and the binding was analyzed by

immunofluorescence microscopy. Note that the

observed binding to WT Slitrk5 is abolished by

deletion of Slitrk5’s extracellular domain (ECD) or

LRR1, but not LRR2.

(B) Quantitative analysis of these results. Results

are means ± SEM from three independent

experiments. 20–30 cells were analyzed per con-

dition per experiment. ***p < 0.0001 significantly

different from WT condition (one-way ANOVA and

Dunnett’s multiple comparisons test).

(C) BDNF displaces Slitrk5 binding from PTPd to

TrkB. Heterophilic cell adhesion assay in which

HEK293-TrkB cells expressing FLAG-Slitrk5 are

co-cultured with HEK293T cells expressing HA-

PTPd. Surface proteins were visualized by fluo-

rescence microscopy in the presence or absence

of BDNF treatment (as described in Supplemental

Experimental Procedures).

(D) Fluorescence intensity trace of FLAG-Slitrk5

(green), HA-PTPd (red), and TrkB (blue) scanning

across corresponding purple arrow as indicated

in (C).

(E) Quantitative colocalization analysis of FLAG-

Slitrk5-HA-PTPd and FLAG-Slitrk5-TrkB in the

presence or absence of BDNF treatment in (C).

Results are means ± SEM from three independent

experiments. 10–15 cells showing heterophilic

adhesion were analyzed per condition per exper-

iment. ***p < 0.0001 significantly different from

control condition (two-way ANOVA and Sidak’s

multiple comparisons test).

(F) BDNF-induced dissociation of pre-bound

PTPd-Fc from HA-Slitrk5-expressing HEK293-

TrkB cells. HA-Slitrk5-expressing HEK293-TrkB

cells were pre-incubated with saturating condition

of PTPd-Fc (400 nM) for 1 hr. After washing, cells

were incubated with indicated dose of BDNF for

30 min. Remaining PTPd-Fc binding was analyzed

by immunofluorescence microscopy. Results are

means ± SEM from three independent experi-

ments. 20–30 cells were analyzed per condition

per experiment.
beginning of the experiments, and their localization was

analyzed by fluorescence microscopy for cis- and trans-interac-

tions in the presence or absence of BDNF treatment. In the

absence of BDNF, all FLAG-Slitrk5 was recruited to regions of

heterophilic interaction with HA-PTPd, where the interacting pro-

teins formed stretched zipper-like structures, with minimal co-

localization with TrkB (Figures 2C–2E). In contrast, upon addition

of BDNF, FLAG-Slitrk5 co-localized with TrkB in punctate endo-

somal structures. Quantification of their co-localization showed

that the binding preference of FLAG-Slitrk5 shifted from PTPd

to TrkB upon BDNF stimulation (Figures 2D and 2E). To further

support this notion of a ligand-dependent shift in interactions,

we employed additional quantitative approaches. We examined

PTPd-Fc binding to Slitrk5 with increasing amounts of PTPd-Fc

in the presence or absence of BDNF (25 ng/ml). Results indicate

that the maximal binding capacity (Bmax) of PTPd-Fc, but not
Devel
dissociation constant (KD), was decreased in the presence of

BDNF (Figure S2A). This result indicates that available PTPd-Fc

binding sites were reduced by BDNF treatment without changing

affinity of PTPd-Fc to Slitrk5. The apparent KD value of PTPd-Fc

binding to Slitrk5 was �100 nM regardless of BDNF treatment.

Next, we measured dissociation of pre-bound PTPd-Fc to sur-

face-expressed HA-Slitrk5 with increasing BDNF concentra-

tions. In accordance with previous competition data (Figures

2C–2E), BDNF potently induced dissociation of pre-bound

PTPd-Fc from HA-Slitrk5-expressing HEK293-TrkB cells (Fig-

ures 2F and S2B). Based on the PTPd-Fc dissociation curve,

the KD value of BDNF to HA-Slitrk5 was �0.9 nM. These results

suggest that both PTPd and TrkB compete for binding to Slitrk5

and that, whereas under basal conditions the interaction with

PTPd predominates, BDNF stimulation directs Slitrk5 to cis-

interactions with TrkB receptors.
opmental Cell 33, 690–702, June 22, 2015 ª2015 Elsevier Inc. 693



Figure 3. Altered TrkB Receptor Activation

and Signaling in the Striatum of Slitrk5–/–

Mice

(A) Representative blots showing effect of loss of

Slitrk5 on TrkB receptor activation and its down-

stream signaling. Striatal lysates from WT and

Slitrk5�/� mice (3 months old, n = 5 for each ge-

notype) were used for immunoblot analysis for

phospho-TrkB, phospho-Akt, and phospho-Erk,

with respective loading controls.

(B) Densitometric quantification of the results

shown on the right. Results are means ± SEM from

three independent experiments.

(C and D) Effects of BDNF on the growth ofWT and

Slitrk5�/� striatal neurons. Cultured striatal neu-

rons from WT and Slitrk5�/� mice were treated

with or without BDNF (40 ng/ml) at DIV2. After

5 days of exposure to BDNF, the cultures were

fixed and stained with anti-GAD65/67 antibody.

Neuronal processes were counted with fluores-

cent microscopy. Representative images of

BDNF-treated WT and Slitrk5�/� striatal neuron

were shown in (C). Quantitation of the number of

primary and secondary dendrites in WT and

Slitrk5�/� is shown in (D). Results are presented as

means ± SEM from three independent experi-

ments determined from analysis of 40 neurons per

condition per experiment (***p < 0.0001, Student’s

t test).
TrkB Receptor Signaling Is Impaired in the Striatum of
Slitrk5–/– Mice
Next, we investigated whether Slitrk5 affects BDNF-mediated

TrkB signaling. First, we examined the impact of Slitrk5 on

steady-state BDNF-TrkB signaling in vivo. Western blot analyses

of striatal lysates obtained from adult WT and Slitrk5�/� mice

showed that TrkB receptor activation was significantly reduced

in Slitrk5�/� mice relative to WT mice (Figures 3A and 3B). This

effect on TrkB receptor activation was also reflected in a reduc-

tion in the activation of its downstream targets, Akt and extracel-

lular signal-regulated kinase (ERK)/mitogen-activated protein
694 Developmental Cell 33, 690–702, June 22, 2015 ª2015 Elsevier Inc.
kinase (MAPK), in the striatum of

Slitrk5�/� mice (Figures 3A and 3B).

Control experiments showed that the

reduction in TrkB receptor activation

and downstream signaling in Slitrk5�/�

mice was not due to alterations in BDNF

protein levels in the striatum (Figure S2A).

Second, we carried out experiments

with cultured striatal neurons to deter-

mine whether the decreased steady-

state levels of TrkB signaling in the stria-

tum of Slitrk5�/� mice might be linked

to altered biological responsiveness to

BDNF. A previous study has demon-

strated that prolonged BDNF treatment

(5 days) of cultured striatal neurons

leads to a significant increase in the

number and length of dendrites (Raus-

kolb et al., 2010). After prolonged (5-

day) exposure to BDNF (40 ng/ml), WT
striatal neurons displayed 4.82 ± 0.19 primary dendrites and

8.62 ± 0.48 secondary dendrites, a 2-fold increase compared

with untreated neurons. In contrast, after 5 days of BDNF

exposure, Slitrk5�/� neurons developed only 2.91 ± 0.14

primary dendrites and 4.5 ± 0.24 secondary dendrites on

average, which was not significantly different from untreated

neurons (Figures 3C and 3D). These in vitro findings indicate

that the absence of Slitrk5 causes no impairment in BDNF-in-

dependent morphogenesis of striatal neurons, but nearly abro-

gates their response to chronic BDNF. Taken together, these

in vivo and in vitro results demonstrate that Slitrk5 is necessary



for optimal long-term BDNF-dependent TrkB signaling in stria-

tal neurons.

Slitrk5 Plays a Pivotal Role in the Endocytic Recycling of
TrkB Receptors
To obtain additional insight into the mechanisms underlying the

role of Slitrk5 in BDNF-mediated TrkB signaling, we conducted

a series of biochemical and fluorescence-based immunocyto-

chemical assays. Initially, we investigated whether Slitrk5 acts,

like p75NTR, by enhancing Trk receptor responsiveness to its

ligand. To this end, we tested inWT versus Slitrk5�/� striatal neu-

rons whether a low dose of BDNF (1.0 ng/ml; 15 min) can acutely

activate TrkB receptors more potently in the presence of Slitrk5.

We chose an early time point at which stageminimal TrkB recep-

tor recycling or degradation occurs (Chen et al., 2005). Our

studies demonstrated no change in short-term TrkB activation

or its downstream signaling pathways (Akt, ERK/MAPK) in

response to low-dose BDNF (Figure S4A). Next, we hypothe-

sized that the decreased steady-state TrkB signaling observed

in Slitrk5�/� striatum (Figure 3A) may be due to alterations in en-

docytic TrkB receptor trafficking at a particular stage after ligand

binding. It has been established that upon binding to neurotro-

phins, Trk receptors are rapidly internalized in a clathrin-depen-

dent manner that engages endocytic adaptors (Grimes et al.,

1997; Zheng et al., 2008; Zhou et al., 2011). Trk receptor endocy-

tosis is also required for certain ligand-mediated downstream

signaling (Riccio et al., 1997; Zheng et al., 2008; Zhou et al.,

2011). To determine whether Slitrk5 functions to regulate endo-

cytosis, we utilized a fluorescent ratiometric internalization assay

we developed to study Trk receptors (Chen et al., 2005), based

on similar assays to study other signaling receptors such as

epidermal growth factor (EGF) receptors and G protein-coupled

receptors (GPCRs) (Gage et al., 2001; Tanowitz and von Zas-

trow, 2003; Vargas and Von Zastrow, 2004). Quantification of

these results confirmed that there was no significant difference

in TrkB endocytosis between WT and Slitrk5�/� striatal neurons

after BDNF treatment (Figure S4B), in agreement with our obser-

vation of similar levels of BDNF-induced TrkB activation at this

time point. An alternative internalization assay using red fluores-

cent protein (RFP)-tagged BDNF confirmed that there was no

alteration in BDNF-dependent TrkB internalization in the

absence of Slitrk5 (Figures S4C and S4D).

The fate of Trk receptors after ligand binding and receptor

internalization has significant impact on the physiological re-

sponses to neurotrophins, as it determines the strength and

duration of signaling cascades initiated by activated Trk recep-

tors. One of the established postendocytic pathways of Trk re-

ceptors is their retrograde trafficking from axons to cell bodies,

which is reportedly required for trophic responses in the PNS,

but not in the CNS (Ginty and Segal, 2002; Riccio et al., 1997).

Alternatively, Trk receptors can undergo (1) trafficking to lyso-

somes, which is reflected in decreased number of surface Trk re-

ceptors and decreased responsiveness to ligand (Sommerfeld

et al., 2000); or (2) recycling to the plasma membrane, which

can lead to functional resensitization of cell-surface-specific

signaling events (Chen et al., 2005; Huang et al., 2009). The

mechanisms regulating the sorting of endocytosed Trk receptors

into these diverse pathways, a complex and highly regulated

process, remain unclear.
Devel
To investigate whether interactions with Slitrk5 control the

postendocytic fates of TrkB, we examined the fate of TrkB

receptors after BDNF treatment inWT and Slitrk5�/� striatal neu-

rons, using standard biotinylation experiments in which cell-sur-

face TrkB receptors are labeled and their degradation measured

after ligand treatment by immunoblot analysis (Arévalo et al.,

2006; Chen et al., 2005). In the WT striatal neurons, �30%

of TrkB was degraded within 90 min after BDNF treatment

(25 ng/ml). Interestingly, we observed increased TrkB degrada-

tion (�70% in 90 min) in Slitrk5�/� striatal neurons (Figures 4A

and 4B). The rate of TrkB degradation was reduced to control

levels after lentiviral transduction of WT Slitrk5 into Slitrk5�/�

neurons, but not after transduction of a chimeric Slitrk5 lacking

its endogenous LRR1 domain [LRR1(S1)-Slitrk5] that has been

shown not to interact with TrkB receptors.

How does the absence of Slitrk5 in cultured striatal neurons

promote accelerated ligand-dependent degradation of TrkB?

We hypothesized that Slitrk5 might promote TrkB recycling

and its absence might allow targeting of endocytosed TrkB re-

ceptors to the degradative pathway. To test this hypothesis,

we used a live-cell assay that was previously used to study recy-

cling to the plasmamembrane for TrkB and TrkA receptors (Chen

et al., 2005; Huang et al., 2009, 2013). This assay is based on the

FLAG-epitope system that allows rapid removal of fluorescei-

nated FLAG antibodies that bind to extracellular FLAG epitopes

on signaling receptors in a calcium-dependent manner (Guan

et al., 1992; Tanowitz and von Zastrow, 2003; Vargas and Von

Zastrow, 2004). InWT striatal neurons, the level of TrkB recycling

was 51% ± 1.4% (Figures 4C and 4D). In contrast, in the

Slitrk5�/� striatal neurons, the level of ligand-dependent TrkB re-

cycling was significantly reduced (33% ± 0.5%). This reduction

in TrkB recycling was specifically rescued after lentiviral trans-

duction of WT Slitrk5 (56% ± 1.8%), but not after transduction

of TrkB binding-deficient Slitrk5 (39% ± 1.8%) (Figures 4C and

4D). In accordance with the binding experiments (Figures 1E

and S1E), TrkC recycling was not affected in the absence of

Slitrk5 (Figures S4E and S4F). Together, these results suggest

that Slitrk5 is required for efficient TrkB receptor recycling after

ligand treatment in striatal neurons.

Slitrk5 Facilitates TrkB Receptor Recruitment into
Rab11 Endosomes
The experiments described above indicate that the persistent

downregulation of TrkB receptors in Slitrk5�/� striatal neurons

may be due to its reduced recycling rate, possibly explaining

our findings of decreased steady-state BDNF-TrkB signaling in

the striatum of Slitrk5�/� mice (Figure 3A), and altered striatal

neuronal morphology (Shmelkov et al., 2010). To elucidate how

Slitrk5 regulates TrkB receptor recycling, we hypothesized that

Slitrk5 might act as a specialized sorting protein that enhances

recycling of endocytosed TrkB receptors and prevents their

incorporation into a degradative route. Recent studies have

emphasized the importance of targeting TrkB receptors to a

Rab11-positive recycling endosomes as an essential step for

the physiological function of TrkB signaling (Huang et al., 2013;

Lazo et al., 2013). Furthermore, it has been shown that TrkB

can form a complex with Rab11 that may modulate synaptic

plasticity (Huang et al., 2013) as well as BDNF-dependent den-

dritic branching (Lazo et al., 2013). To test our hypothesis, we
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Figure 4. Slitrk5 Plays a Pivotal Role in Ligand-Dependent TrkB Receptor Recycling

(A) Representative blot showing enhanced BDNF-induced TrkB degradation inSlitrk5�/� striatal neurons.WT andSlitrk5�/� striatal neuronswere transducedwith

HA-tagged WT Slitrk5, or chimeric HA-tagged-LRR1-domain-swapped (HA-LRR1(S1) Slitrk5)-expressing, or empty vector lentivirus at DIV2. Neurons were

surface biotinylated and incubated at 37�C for 90 min in the absence or presence of 25 ng/ml BDNF at DIV6. Surface-labeled receptors were detected by

streptavidin pull-down followed by anti-TrkB immunoblotting.

(B) Densitometric quantification of the results from three independent experiments shown in (A) (*p < 0.05, Student’s t test).

(C and D) TrkB recycling was impaired in Slitrk5�/� striatal neurons. TrkB recycling was examined in WT and Slitrk5�/� neurons with live-cell fluorescence ra-

tiometric recycling assay. WT and Slitrk5�/� striatal neurons were co-transfected with FLAG-tagged TrkB lentivirus, HA-tagged WT Slitrk5, or chimeric HA-

tagged-LRR1-domain-swapped (HA-LRR1(S1) Slitrk5)-expressing, or empty vector lentivirus at DIV2. Internalization of TrkB receptor was induced by BDNF

treatment for 30 min after labeling surface FLAG-tagged TrkB with Alexa 488 dye-conjugated anti-FLAG (M1) antibody. Remaining surface anti-FLAG (M1)

antibodies were removedwith EDTA-containing Ca2+/Mg2+-free PBS, and then recycling of FLAG-tagged TrkBwasmonitored in the presence of Cy3-conjugated

anti-mouse secondary antibody in culture medium. (C) Representative images from FLAG-tagged TrkB recycling experiment in striatal neurons. Control refers to

the 100% surface TrkB receptor control, and Strip refers to the 0% recycled control. The right panels of each images showed enlarged images of framed regions.

(D) Receptor recycling was quantitated as described in Experimental Procedures. Results are presented as means ± SEM from three independent experiments

determined from analysis of 30 neurons per condition per experiment (***p < 0.001, *p < 0.05, Student’s t test).
initially examined whether Slitrk5 mediates recycling of TrkB

into Rab11-positive endosomes in cultured striatal neurons.

After transduction with lentivirus encoding HA-tagged Slitrk5

construct, days in vitro 6 (DIV6) WT striatal neurons were labeled

using a ‘‘live-feeding’’ method to specifically visualize cell-sur-

face HA-tagged Slitrk5 and endogenous TrkB receptors with

their respective antibodies (Chen et al., 2005; Huang et al.,

2009, 2013). Neurons were stained for Rab11 after fixation and

permeabilization. In the absence of BDNF treatment, only mini-

mal co-localization of TrkB, HA-tagged Slitrk5, and Rab11 was

detected in WT striatal neurons. In contrast, after 30 min of

BDNF treatment, there was a significant overlap of Slitrk5 and
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TrkB in Rab11-positive compartments (Figure 5A). This result

suggests that Slitrk5 and TrkB receptors are sorted to Rab11-

positive compartments after ligand treatment. We next investi-

gated whether Slitrk5 is required for TrkB localization to the

Rab11-positive compartments. In WT striatal neurons, there

was 3-fold increase in TrkB co-localization with Rab11 at

30 min after BDNF treatment (Figures 5B and 5C). This colocal-

ization was significantly reduced after similar treatment of BDNF

inSlitrk5�/� striatal neurons (Figures 5B and 5C). Together, these

results suggest that Slitrk5 plays an important role in TrkB

recycling by facilitating TrkB sorting into Rab11-positive com-

partments after BDNF treatment.
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Figure 5. Slitrk5 Facilitates TrkB Receptor Recruitment into Rab11-Positive Compartments

(A) Representative images showing co-localization of TrkB receptors and Slitrk5 in Rab11-positive compartments. WT striatal neurons were transduced with HA-

tagged Slitrk5 lentivirus at DIV2. Live neurons were incubated with anti-TrkB and anti-HA antibody to specifically label cell-surface proteins and then stimulated

with or without BDNF for 30 min at DIV6. Rab11 was stained after fixation and permeabilization. Super-resolution images were acquired using a Nikon N-SIM

structured illumination microscope.

(B) Representative images showing requirement of Slitrk5 for TrkB localization into Rab11-positive compartments after BDNF treatment. Co-localization of TrkB

receptors and Rab11 was examined with WT and Slitrk5�/� striatal neurons in the presence or absence of BDNF. Lower panels show enlarged images of

numbered regions in upper panels.

(C) Co-localization of TrkB and Rab11 was quantitated as described in Experimental Procedures. Results are presented asmeans ± SEM from three independent

experiments determined from analysis of n R 30 neurons per condition per experiment (***p < 0.001, Student’s t test).
Slitrk5 Facilitates Rab11-FIP3 Recruitment of TrkB
Receptors to Rab11 Compartments
To obtain additional mechanistic insight on how Slitrk5 mediates

the sorting of endocytosed TrkB to the Rab11-positive compart-

ments, we screened for TrkB interacting proteins using a yeast

two-hybrid assay. An 85-amino-acid (aa) intracellular juxtamem-

brane region of the TrkB receptor was selected as bait, since the

region was shown to be important for endocytic TrkB recycling

(Chen et al., 2005; Huang et al., 2009). Among the positive clones

was Rab11-FIP3, a protein that has been also established to

interact with ADP-ribosylation factors (ARF5, ARF6) as well as

with motor proteins (kinesin I, dynein light intermediate chain)

(Horgan et al., 2010; Prekeris, 2003; Simon and Prekeris,

2008), and was previously shown to modulate recycling of

various cargoes (Horgan and McCaffrey, 2009; Prekeris, 2003).

We confirmed with co-immunoprecipitation studies that

Rab11-FIP3 and TrkB receptors interacted (Figure S5A). To
Devel
test whether there was a physical interaction between Slitrk5

and Rab11-FIP3, we transfected FLAG-tagged Slitrk5 and HA-

tagged Rab11-FIP3 plasmids into HEK293T cells and confirmed

their binding with co-immunoprecipitation study (Figure 6A).

Additional experiments with a panel of Rab11-FIPs demon-

strated that Slitrk5 bound selectively and directly to Rab11-

FIP3, but not to other Rab11-FIPs (Figures 6B and S6A), and

facilitated the interaction between TrkB and Rab11-FIP3 (Fig-

ure S5B). Rab11 was not required for Rab11-FIP3 binding to

Slitrk5; however, Rab11-FIP3 was essential for the recruitment

of Rab11 to Slitrk5 (Figures S6B–S6D). In parallel with this

biochemical study, we performed fluorescent microscopy

studies to assess co-localization of Slitrk5, TrkB, and Rab11-

FIP3 in cultured striatal neurons. Endogenous TrkB and trans-

fected HA-tagged Slitrk5 were visualized using the live-feeding

method with respective antibodies to specifically label cell-

surface TrkB and HA-tagged Slitrk5, and then endogenous
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Figure 6. Slitrk5 Interacts with Rab11-FIP3 to Facilitate TrkB Receptor Trafficking to Rab11-Positive Recycling Endosomes

(A and B) Representative blots showing specific interaction between Slitrk5 and Rab11-FIP3. (A) HEK293T cells were transfected with cDNAs encoding FLAG-

Slitrk5, and HA-Rab11-FIP3. Cell lysates were immunoprecipitated with anti-HA antibodies and immunoblotted with anti-FLAG antibodies. (B) HEK293T cells

were transfected with cDNAs encoding FLAG-Slitrk5, and either empty vector, Rab11-FIP3-GFP, FIP1C-GFP, FIP4-GFP, or FIP5-GFP. Cell lysates were

immunoprecipitated with anti-GFP antibodies and blotted with anti-FLAG antibodies.

(C) Representative image showing the co-localization of TrkB and Slitrk5 with Rab11-FIP3 with BDNF-dependent manner. WT striatal neurons expressing HA-

Slitrk5 were stimulated with or without BDNF after incubating with anti-TrkB and anti-HA antibody for surface protein labeling. Neurons were stained with anti-

Rab11-FIP3 antibody after fixation and permeabilization. Super-resolution images were acquired using a Nikon N-SIM structured illumination microscope.

(D) Representative images showing requirement of Slitrk5 for TrkB receptor localization in Rab11-FIP3 compartments. Co-localization of TrkB and Rab11-FIP3

was examined with WT and Slitrk5�/� striatal neurons in the presence or absence of BDNF. Lower panels show enlarged images of numbered regions in upper

panels.

(E) Co-localization of TrkB and Rab11-FIP3 was quantitated as described in Experimental Procedures. Results are presented as means ± SEM from three

independent experiments determined from analysis of n R 20 neurons per condition per experiment (*p < 0.05, ***p < 0.001, Student’s t test).
Rab11-FIP3 was imaged after fixation and permeabilization. The

results showed that, indeed, TrkB and Slitrk5 were co-localized

with Rab11-FIP3 after BDNF treatment (Figure 6C).Wewere also

able to see co-localization of TrkB, Slitrk5, Rab11-FIP3, and

Rab11 after BDNF treatment (Figure S6E). These findings

support a scenario in which Slitrk5 recruits Rab11-FIP3 to TrkB

receptors during postendocytic trafficking to properly target

TrkB receptors to the recycling pathway.

We next investigated whether Slitrk5 is required for TrkB local-

ization to the Rab11-FIP3-positive compartments. We used a

live-feeding method to specifically visualize cell-surface TrkB re-

ceptors with anti-TrkB antibodies (Chen et al., 2005; Huang et al.,

2009, 2013) and stained for Rab11-FIP3 after fixation and per-

meabilization. Results showed impaired TrkB localization in

Rab11-FIP3-positive compartments in Slitrk5�/� striatal neurons

after BDNF treatment (Figures 6D and 6E). However, there was a
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significant overlap of TrkB in compartments that were positive

for Rab11-FIP3 inWT striatal neurons after BDNF treatment (Fig-

ures 6D and 6E).

Slitrk5-Mediated Rab11-FIP3 Recruitment Is Required
for TrkB Recycling
To further examine whether Rab11-FIP3 is directly involved in

TrkB recycling, we performed live-cell fluorescent ratiometric re-

cycling assays with control small interfering RNA (siRNA) or

Rab11-FIP3 siRNA-transfected striatal neurons. Knockdown ef-

ficiency of siRNA targeting Rab11-FIP3 was validated with west-

ern blot and qPCR analyses (Figures S7A and S7B). Quantifica-

tion of these results by ratiometric analysis confirmed that TrkB

recycling was impaired in striatal neurons upon Rab11-FIP3

knockdown (36.95% ± 1.75%) compared to control siRNA

transfected (48.12% ± 2.48%) (Figures 7A and S7C). We also
nc.



Figure 7. Slitrk5-Mediated Rab11-FIP3 Recruitment Is Required for TrkB Recycling

(A) TrkB recycling was quantified with live-cell fluorescence ratiometric recycling assay in the control siRNA (Scrb) or Rab11-FIP3 siRNA-transfected striatal

neuron. Knockdown efficiency of siRNA targeting Rab11-FIP3 and representative images of live-cell fluorescence ratiometric recycling assay are shown in

Figures S4A–S4C. The error bars represent the SEM of three independent experiments (n R 30 cells for each condition per experiment (**p < 0.001, Student’s

t test).

(B) ERM domain of Rab11-FIP3 mediates Slitrk5 binding. HEK293T cells were co-transfected with cDNAs encoding FLAG-Slitrk5, and either empty vector, HA-

Rab11-FIP3, HA-Rab11-FIP3DRBD, or HA-Rab11-FIP3DERM. Cell lysates were immunoprecipitatedwith anti-HA antibodies and immunoblotted with anti-FLAG

antibodies. Schematic of Rab-FIP3 denoting established domains (EF Hand, ERM domain, and RBD [Rab11 binding domain]).

(C) Mapping domain in Slitrk5 that mediates association with Rab11-FIP3. (Left) Schematic representation shows a series of Slitrk5 deletion mutants that were

tested for the capacity to interact with Rab11-FIP3. HEK293T cells were co-transfected with cDNAs encoding HA-Rab11-FIP3 and either FLAG-Slitrk5 or FLAG-

Slitrk5DFIP3BD. (Right) Cell lysates were immunoprecipitated with anti-FLAG antibodies and immunoblotted with anti-HA antibodies.

(D) Rab11-FIP3 binding is required for Slitrk5 to rescue reduced recycling of TrkB in Slitrk5�/� striatal neurons. WT and Slitrk5�/� striatal neurons were co-

transfected at DIV2 with FLAG-tagged TrkB lentivirus, and either empty vector, HA-Slitrk5, or HA-tagged Rab11-FIP3 binding-deficient Slitrk5 (HA-Slitrk5D

FIP3BD). BDNF-induced TrkB recycling was measured with live-cell fluorescence ratiometric recycling assay at DIV6, as described in Experimental Procedures.

The error bars represent the SEM of three independent experiments (n R 30 cells for each condition per experiment (***p < 0.0001, Student’s t test).

(E) A cell-surface biotinylation assay shows that RAB11-FIP3 binding-deficient Slitrk5 is not able to rescue enhanced degradation of TrkB. WT and Slitrk5�/�

striatal neurons were transduced with empty vector, HA-tagged WT Slitrk5, or HA-Slitrk5DFIP3BD-expressing lentivirus at DIV2. At DIV6 neurons were surface

biotinylated and incubated in the presence or absence of BDNF (25 ng/ml; 90 min). Cell lysates were subjected to avidin pull-down, and TrkB levels were as-

sessed by immunoblotting with anti-TrkB antibodies.

(F) Densitometric quantification of the results was shown. The error bars represent the SEM of three independent experiments (*p < 0.05, Student’s t test).
confirmed that TrkB recycling was impaired in striatal neurons

transfected with Rab11-FIP3DRBD or DERM mutant, presum-

ably due to the impaired Rab11 binding or Slitrk5 binding,

respectively (Figures S7D and S7E).

Rab11-FIP3 contains several conserved domains that may be

involved in protein-protein interactions. The central ezrin/radixin/

moesin (ERM) domain is known to interact with actin cytoskel-

eton while Rab11 binding domain is localized in the C terminus.
Devel
To determine the Rab11-FIP3 domain responsible for binding to

Slitrk5, we constructed a series of deletion mutants and tested

their ability to interact with Slitrk5. Co-immunoprecipitation ex-

periments showed that the ERMdomain of Rab11-FIP3 is essen-

tial for the Slitrk5 binding (Figure 7B).

We next mapped the Rab11-FIP3 binding region on Slitrk5 us-

ing a series of C-terminal deletion mutants of Slitrk5. We found

that deletion of 13 amino acids in the intracellular region of Slitrk5
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abolished Rab11-FIP3 binding (Figure 7C). Next, we took advan-

tage of this Rab11-FIP3 binding-deficient mutant (Slitrk5D

FIP3BD) to determine whether Rab11-FIP3 is necessary for

ligand-dependent TrkB recycling. Using fluorescent ratiometric

recycling assays, we demonstrated that Slitrk5DFIP3BD was

not able to rescue the decreased recycling of TrkB in Slitrk5�/�

striatal neurons (Figure 7D) in contrast to WT Slitrk5. In accor-

dance with this result, a TrkB degradation experiment showed

that Slitrk5DFIP3BD was not able to reverse the enhanced rate

of TrkB degradation in Slitrk5�/� striatal neurons (Figures 7E

and 7F). These complementary experiments highlight the impor-

tance of Rab11-FIP3 binding to Slitrk5 inmediating efficient TrkB

recycling in striatal neurons and suggest that Slitrk5 plays a

pivotal role in the Rab11-mediated TrkB recycling by facilitating

the recruitment of a Rab11 interacting protein, Rab11-FIP3, into

the TrkB receptor complex for efficient targeting to the recycling

endosomes.

DISCUSSION

LRR domain-containing proteins play pivotal roles in the regula-

tion of various neuronal functions, such as neurite outgrowth,

synapse formation, and dendritic morphogenesis. Two basic

mechanisms are employed by LRR proteins to execute such

functions. First, LRR proteins function in trans as cell-cell adhe-

sion molecules that mediate axon-dendrite adhesion (Gur et al.,

2004; Laederich et al., 2004; Lin et al., 2003; Shattuck et al.,

2007; Zhao et al., 2008). Second, LRR proteins act in cis to

regulate cell-surface receptor function (Gur et al., 2004; Laeder-

ich et al., 2004; Shattuck et al., 2007; Zhao et al., 2008). Here,

we have shown that Slitrk5, a postsynaptic plasma membrane

protein containing extracellular LRR domains, interacts under

basal conditions with the presynaptic adhesion molecule PTPd

in trans, but in the presence of BDNF, shifts to a cis-interaction

with TrkB receptor that mediates its postendocytic recycling,

leading to functional resensitization of neurotrophic signaling.

Of note, the Slitrk5 interaction with TrkB receptors represents

the first reported interaction among LRR proteins and receptor

tyrosine kinases (RTKs) that is mediated by the respective LRR

domains. This likely contributes to the high specificity of this

interaction and to the exclusion of other Slitrk and Trk family

members (Figure 1). In contrast to other LRR-containing pro-

teins, such as Lrigs, which negatively regulate epidermal growth

factor receptor (EGFR) and Met, Slitrk5 positively regulates TrkB

receptor activity. In addition, a recent study shows that another

LRR-containing protein, Linx, is required for NGF-TrkA and glial

cell line-derived neurotrophic factor (GDNF)-GDNF a1 (GFRa1)/

Ret-mediated sensory and motor axonal projections. Linx forms

physical complex with Trk receptors (TrkA and TrkC, but not

with TrkB) and Ret receptors; however, it was not determined

how Linx modulates RTK complexes in that study (Mandai

et al., 2009). Linx has a relatively short cytoplasmic domain

(134 aa) compared to Slitrk5 (271 aa), and does not have fea-

tures required for downstream signaling in the cytoplasmic

domain, e.g., a tyrosine phosphorylation site or a Src homology

2 (SH2) domain binding site, both observed in the intracellular

domain of Slitrk5. Interestingly, we found that Linx is required

for the recycling of TrkA (Figures S7F–S7H). Together with the

suggested role of Lrigs on EGFR ubiquitination and downregu-
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lation (Gur et al., 2004; Laederich et al., 2004), these results sug-

gest that LRR protein-mediated regulation of trafficking fate

could be a universally employed mechanism for modulating

RTK signaling.

In addition to the originally established function of Slitrk fam-

ily members in regulating neuronal processes outgrowth (Abel-

son et al., 2005; Aruga and Mikoshiba, 2003), recent studies

have focused on Slitrks’ involvement in synapse formation. All

Slitrk family members have been shown to induce presynaptic

neuronal differentiation in a cellular co-culture system (Takaha-

shi et al., 2012). Slitrks have been shown to interact with

presynaptic receptor-type PTPd. Thus, Slitrks were only

considered to mediate a trans-interaction with a presynaptic re-

ceptor-type protein tyrosine phosphatase. Our current studies

elucidate a new aspect of Slitrk5 function in which Slitrk5 has

a cis-interaction with activated TrkB receptors on the surface

of postsynaptic sites via extracellular interactions. Intriguingly,

the cis-interactions of Slitrk5 with TrkB receptors compete

with trans-interactions with presynaptic partners PTPd, and

the competition was modulated by BDNF stimulation (Figure 2).

It will be important to study further the significance of the inter-

play between these three synaptic molecules during steady-

state and activity-dependent synaptic remodeling. It is inter-

esting to note that significant co-localization of Slitrk5 and

TrkB receptors occurs only after BDNF treatment, suggesting

that the interaction is enhanced after TrkB dimerization,

involving the two LRR domains in the TrkB dimer, leading to

optimal interaction with the LRR1 domain of Slitrk5. The inter-

action between the extracellular domains of Slitrk5 and TrkB

allows their intracellular interaction with Rab11-FIP3, which

mediates the recycling of TrkB receptors to the cell surface

via Rab11 recycling endosomes, while not trafficking the other

TrkB isoform, truncated TrkB receptor, to the same compart-

ments. Truncated TrkB receptors have been shown to act in

a dominant-negative manner, sequestering BDNF from full-

length TrkB (Eide et al., 1996). In striatal neurons, with limiting

BDNF supplies, Slitrk5 could thus act to efficiently recycle acti-

vated TrkB receptors, facilitating BDNF-dependent signaling

pathways.

In summary, the present study identifies an unanticipated role

of a cell-surface transmembrane protein in regulating TrkB re-

ceptor endocytic trafficking to recycling endosomes, leading to

facilitation of neurotrophic signaling in neurons. Engagement of

TrkB receptors with Slitrk5, as a co-receptor, represents a new

mechanism of how neurons within a particular brain region

with limiting BDNF levels can expand the strength and duration

of neurotrophic factor signaling. The striatum is the largest

component of the basal ganglia, and loss of striatal function

has been implicated in neurodegenerative disorders such as

Huntington’s disease and Parkinson’s disease. While neurotro-

phins and neurotrophin receptors have been thought of as po-

tential therapeutic targets for these disorders, there has been

limited success in these lines of investigation due to pharmaco-

kinetic and delivery issues. Slitrk5 represents a new potential

target for therapeutics for these neurodegenerative disorders

in which selective facilitation of BDNF-dependent signaling

could be achieved in a region-specific manner by enhancing

interaction of TrkB receptors with Slitrk5 in the absence of exog-

enous neurotrophic factors.
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EXPERIMENTAL PROCEDURES

Reagents and Antibodies

The reagents, antibodies, plasmid construct, siRNA, and primers used in this

study are available in Supplemental Experimental Procedures.

Production of Soluble PTPd-Fc Protein and Binding Assays

Based on previously described methods (Takahashi et al., 2012), PTPd-Fc

was generated using HEK293 cells transfected with the expression vectors,

and purified from culture media. For testing binding of soluble PTPd-Fc,

HEK293T or HEK293-TrkB cells on coverslips were transfected with the

expression vectors for WT and deletion mutants of HA-tagged Slitrk5 and

grown for 24 hr. The transfected cells were washed with extracellular solu-

tion (ECS; 168 NaCl mM, 2.4 KCl mM, 20 mM HEPES [pH 7.4], 10 mM

D-glucose, 2 mM CaCl2, 1.3 mM MgCl2) that contained 100 mg/ml BSA

(ECS/BSA) and then incubated with ECS/BSA that contained 100 nM puri-

fied PTPd Fc-fusion protein for 1 hr at room temperature in the presence or

absence of BDNF. The cells were washed in ECS, fixed with 4% paraformal-

dehyde, and incubated first with blocking solution and then with mouse

anti-HA antibody. Cells were incubated with subtype-specific fluorescen-

ated secondary antibodies and analyzed by fluorescence microscopy with

Alexa 488 dye-conjugated anti-human immunoglobulin G (IgG) (H+L) anti-

bodies (donkey IgG, 1:400, Jackson ImmunoResearch Laboratories) for

labeling of bound Fc proteins. For the PTPd-Fc dissociation experiment,

Slitrk5-expressing HEK293-TrkB cells were incubated with purified PTPd

Fc-fusion protein for 1 hr at room temperature. After washing with ECS,

PTPd Fc-bound cells were incubated with indicated dose of BDNF for

30 min at room temperature. For quantification, we measured the average

intensity of bound Fc protein per COS cell area, subtracted for off-cell

background.

Super-Resolution Microscopy

For super-resolution analysis, imaging was performed on Nikon’s structured

illumination microscope (N-SIM) Nikon Eclipse Ti that can bring the resolution

to 100–85 nm, equipped with an ANDOR camera. Images of Alexa fluors 488,

568, and 647 were acquired in 3D-SIM mode using 1003 Apo total internal

reflection fluorescence (TIRF) lens with 1.49 numerical aperture (NA).

For every z stack, 15 images were generated, resulting from three directions

and five phases, which were subsequently reconstructed using NIS-

Elements software with SIM plugin (Nikon) to generate super-resolution

data. In order to outline dendritic morphology, MAP2 images were acquired

using TIRF 405 laser and combined with SIM images. The background was

subtracted and maximum intensity projection-collapsed images are por-

trayed along with cropped segments represented in volume view. Each

experiment was repeated at least three times. See the Supplemental Exper-

imental Procedures for details on neuronal culture and imaging sample

preparation.

Analysis of Trk Receptor Recycling by using Fluorescence Ratio

Microscopy

To quantify the extent of TrkB recycling in individual neurons, an adapted

version of previous receptor recycling methods (Chen et al., 2005; Tanowitz

and von Zastrow, 2003; Vargas and Von Zastrow, 2004) was employed. Details

are available in Supplemental Experimental Procedures.

Statistical Analyses

Statistical analyses were performed using Prism v.5.0 software (GraphPad).

Statistical significance was considered at *p % 0.05, **p % 0.01, and ***p %

0.001 between the means of a minimum of three groups and was determined

using Student’s t test or one-way or two-way ANOVA test as indicated in the

figure legends. Results are expressed as the mean ± SD. All experiments

were done with at least three independent biological replicates.
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Arévalo, J.C., Waite, J., Rajagopal, R., Beyna, M., Chen, Z.Y., Lee, F.S., and

Chao, M.V. (2006). Cell survival through Trk neurotrophin receptors is differen-

tially regulated by ubiquitination. Neuron 50, 549–559.

Aruga, J., and Mikoshiba, K. (2003). Identification and characterization of

Slitrk, a novel neuronal transmembrane protein family controlling neurite

outgrowth. Mol. Cell. Neurosci. 24, 117–129.

Baquet, Z.C., Gorski, J.A., and Jones, K.R. (2004). Early striatal dendrite

deficits followed by neuron loss with advanced age in the absence of anter-

ograde cortical brain-derived neurotrophic factor. J. Neurosci. 24, 4250–

4258.

Baydyuk, M., Russell, T., Liao, G.Y., Zang, K., An, J.J., Reichardt, L.F., and Xu,

B. (2011). TrkB receptor controls striatal formation by regulating the number of

newborn striatal neurons. Proc. Natl. Acad. Sci. USA 108, 1669–1674.

Benedetti, M., Levi, A., and Chao, M.V. (1993). Differential expression of nerve

growth factor receptors leads to altered binding affinity and neurotrophin

responsiveness. Proc. Natl. Acad. Sci. USA 90, 7859–7863.

Chao, M.V. (2003). Neurotrophins and their receptors: a convergence point for

many signalling pathways. Nat. Rev. Neurosci. 4, 299–309.

Chen, Z.Y., Ieraci, A., Tanowitz, M., and Lee, F.S. (2005). A novel endocytic re-

cycling signal distinguishes biological responses of Trk neurotrophin recep-

tors. Mol. Biol. Cell 16, 5761–5772.

Eide, F.F., Vining, E.R., Eide, B.L., Zang, K., Wang, X.Y., and Reichardt, L.F.

(1996). Naturally occurring truncated trkB receptors have dominant inhibi-

tory effects on brain-derived neurotrophic factor signaling. J. Neurosci. 16,

3123–3129.

Fogel, A.I., Akins,M.R., Krupp, A.J., Stagi,M., Stein, V., andBiederer, T. (2007).

SynCAMs organize synapses through heterophilic adhesion. J. Neurosci. 27,

12516–12530.
opmental Cell 33, 690–702, June 22, 2015 ª2015 Elsevier Inc. 701

http://dx.doi.org/10.1016/j.devcel.2015.04.009
http://dx.doi.org/10.1016/j.devcel.2015.04.009
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref1
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref1
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref1
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref1
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref2
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref2
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref2
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref3
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref3
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref3
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref4
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref4
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref4
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref4
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref5
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref5
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref5
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref6
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref6
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref6
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref7
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref7
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref8
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref8
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref8
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref9
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref9
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref9
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref9
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref10
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref10
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref10


Gage, R.M., Kim, K.A., Cao, T.T., and von Zastrow, M. (2001). A transplantable

sorting signal that is sufficient to mediate rapid recycling of G protein-coupled

receptors. J. Biol. Chem. 276, 44712–44720.

Gay, N.J., Packman, L.C., Weldon, M.A., and Barna, J.C. (1991). A leucine-rich

repeat peptide derived from the Drosophila Toll receptor forms extended fila-

ments with a beta-sheet structure. FEBS Lett. 291, 87–91.

Ginty, D.D., and Segal, R.A. (2002). Retrograde neurotrophin signaling: Trk-ing

along the axon. Curr. Opin. Neurobiol. 12, 268–274.

Grimes, M.L., Beattie, E., and Mobley, W.C. (1997). A signaling organelle con-

taining the nerve growth factor-activated receptor tyrosine kinase, TrkA. Proc.

Natl. Acad. Sci. USA 94, 9909–9914.

Guan, X.M., Kobilka, T.S., and Kobilka, B.K. (1992). Enhancement of mem-

brane insertion and function in a type IIIb membrane protein following intro-

duction of a cleavable signal peptide. J. Biol. Chem. 267, 21995–21998.

Gur, G., Rubin, C., Katz, M., Amit, I., Citri, A., Nilsson, J., Amariglio, N.,

Henriksson, R., Rechavi, G., Hedman, H., et al. (2004). LRIG1 restricts growth

factor signaling by enhancing receptor ubiquitylation and degradation. EMBO

J. 23, 3270–3281.

Gustafsson, M.G.L. (2000). Surpassing the lateral resolution limit by a factor of

two using structured illumination microscopy. J. Microsc. 198, 82–87.

Hempstead, B.L., Martin-Zanca, D., Kaplan, D.R., Parada, L.F., and Chao,

M.V. (1991). High-affinity NGF binding requires coexpression of the trk

proto-oncogene and the low-affinity NGF receptor. Nature 350, 678–683.

Horgan, C.P., and McCaffrey, M.W. (2009). The dynamic Rab11-FIPs.

Biochem. Soc. Trans. 37, 1032–1036.

Horgan, C.P., Hanscom, S.R., Jolly, R.S., Futter, C.E., and McCaffrey, M.W.

(2010). Rab11-FIP3 links the Rab11 GTPase and cytoplasmic dynein to

mediate transport to the endosomal-recycling compartment. J. Cell Sci.

123, 181–191.

Huang, E.J., and Reichardt, L.F. (2003). Trk receptors: roles in neuronal signal

transduction. Annu. Rev. Biochem. 72, 609–642.

Huang, S.H., Zhao, L., Sun, Z.P., Li, X.Z., Geng, Z., Zhang, K.D., Chao, M.V.,

and Chen, Z.Y. (2009). Essential role of Hrs in endocytic recycling of full-length

TrkB receptor but not its isoform TrkB.T1. J. Biol. Chem. 284, 15126–15136.

Huang, S.H., Wang, J., Sui, W.H., Chen, B., Zhang, X.Y., Yan, J., Geng, Z., and

Chen, Z.Y. (2013). BDNF-dependent recycling facilitates TrkB translocation

to postsynaptic density during LTP via a Rab11-dependent pathway.

J. Neurosci. 33, 9214–9230.

Ko, J. (2012). The leucine-rich repeat superfamily of synaptic adhesion mole-

cules: LRRTMs and Slitrks. Mol. Cells 34, 335–340.

Kuruvilla, R., Zweifel, L.S., Glebova, N.O., Lonze, B.E., Valdez, G., Ye, H., and

Ginty, D.D. (2004). A neurotrophin signaling cascade coordinates sympathetic

neuron development through differential control of TrkA trafficking and retro-

grade signaling. Cell 118, 243–255.

Laederich, M.B., Funes-Duran, M., Yen, L., Ingalla, E., Wu, X., Carraway, K.L.,

3rd, and Sweeney, C. (2004). The leucine-rich repeat protein LRIG1 is a nega-

tive regulator of ErbB family receptor tyrosine kinases. J. Biol. Chem. 279,

47050–47056.

Lazo, O.M., Gonzalez, A., Ascano, M., Kuruvilla, R., Couve, A., and Bronfman,

F.C. (2013). BDNF regulates Rab11-mediated recycling endosome dynamics

to induce dendritic branching. J. Neurosci. 33, 6112–6122.

Lee, F.S., Kim, A.H., Khursigara, G., and Chao, M.V. (2001). The uniqueness of

being a neurotrophin receptor. Curr. Opin. Neurobiol. 11, 281–286.

Lee, K.F., Davies, A.M., and Jaenisch, R. (1994). p75-deficient embryonic

dorsal root sensory and neonatal sympathetic neurons display a decreased

sensitivity to NGF. Development 120, 1027–1033.

Li, Y., Yui, D., Luikart, B.W., McKay, R.M., Li, Y., Rubenstein, J.L., and Parada,

L.F. (2012). Conditional ablation of brain-derived neurotrophic factor-TrkB

signaling impairs striatal neuron development. Proc. Natl. Acad. Sci. USA

109, 15491–15496.

Lin, J.C., Ho, W.H., Gurney, A., and Rosenthal, A. (2003). The netrin-G1 ligand

NGL-1 promotes the outgrowth of thalamocortical axons. Nat. Neurosci. 6,

1270–1276.
702 Developmental Cell 33, 690–702, June 22, 2015 ª2015 Elsevier I
Linhoff, M.W., Laurén, J., Cassidy, R.M., Dobie, F.A., Takahashi, H., Nygaard,

H.B., Airaksinen, M.S., Strittmatter, S.M., and Craig, A.M. (2009). An unbiased

expression screen for synaptogenic proteins identifies the LRRTM protein

family as synaptic organizers. Neuron 61, 734–749.

Mandai, K., Guo, T., St Hillaire, C., Meabon, J.S., Kanning, K.C., Bothwell, M.,

andGinty, D.D. (2009). LIG family receptor tyrosine kinase-associated proteins

modulate growth factor signals during neural development. Neuron 63,

614–627.

Prekeris, R. (2003). Rabs, Rips, FIPs, and endocytic membrane traffic.

ScientificWorldJournal 3, 870–880.

Proenca, C.C., Gao, K.P., Shmelkov, S.V., Rafii, S., and Lee, F.S. (2011). Slitrks

as emerging candidate genes involved in neuropsychiatric disorders. Trends

Neurosci. 34, 143–153.

Rauskolb, S., Zagrebelsky, M., Dreznjak, A., Deogracias, R., Matsumoto, T.,

Wiese, S., Erne, B., Sendtner, M., Schaeren-Wiemers, N., Korte, M., et al.

(2010). Global deprivation of brain-derived neurotrophic factor in the CNS re-

veals an area-specific requirement for dendritic growth. J. Neurosci. 30, 1739–

1749.

Riccio, A., Pierchala, B.A., Ciarallo, C.L., and Ginty, D.D. (1997). An NGF-TrkA-

mediated retrograde signal to transcription factor CREB in sympathetic neu-

rons. Science 277, 1097–1100.

Shattuck, D.L., Miller, J.K., Laederich, M., Funes, M., Petersen, H., Carraway,

K.L., 3rd, and Sweeney, C. (2007). LRIG1 is a novel negative regulator of the

Met receptor and opposes Met and Her2 synergy. Mol. Cell. Biol. 27, 1934–

1946.

Shmelkov, S.V., Hormigo, A., Jing, D., Proenca, C.C., Bath, K.G., Milde, T.,

Shmelkov, E., Kushner, J.S., Baljevic, M., Dincheva, I., et al. (2010). Slitrk5 defi-

ciency impairs corticostriatal circuitry and leads to obsessive-compulsive-like

behaviors in mice. Nat. Med. 16, 598–602.

Simon, G.C., and Prekeris, R. (2008). Mechanisms regulating targeting of recy-

cling endosomes to the cleavage furrow during cytokinesis. Biochem. Soc.

Trans. 36, 391–394.

Sommerfeld, M.T., Schweigreiter, R., Barde, Y.A., and Hoppe, E. (2000).

Down-regulation of the neurotrophin receptor TrkB following ligand binding.

Evidence for an involvement of the proteasome and differential regulation of

TrkA and TrkB. J. Biol. Chem. 275, 8982–8990.

Takahashi, H., Katayama, K., Sohya, K., Miyamoto, H., Prasad, T., Matsumoto,

Y., Ota, M., Yasuda, H., Tsumoto, T., Aruga, J., et al. (2012). Selective control

of inhibitory synapse development by Slitrk3-PTPdelta trans-synaptic interac-

tion. Nat. Neurosci. 15, 389–398.

Tanowitz, M., and von Zastrow, M. (2003). A novel endocytic recycling signal

that distinguishes the membrane trafficking of naturally occurring opioid re-

ceptors. J. Biol. Chem. 278, 45978–45986.

Vargas, G.A., and Von Zastrow, M. (2004). Identification of a novel endocytic

recycling signal in the D1 dopamine receptor. J. Biol. Chem. 279, 37461–

37469.

Yim, Y.S., Kwon, Y., Nam, J., Yoon, H.I., Lee, K., Kim, D.G., Kim, E., Kim, C.H.,

and Ko, J. (2013). Slitrks control excitatory and inhibitory synapse formation

with LAR receptor protein tyrosine phosphatases. Proc. Natl. Acad. Sci.

USA 110, 4057–4062.

Zhao, H., Tanegashima, K., Ro, H., and Dawid, I.B. (2008). Lrig3 regulates neu-

ral crest formation in Xenopus by modulating Fgf and Wnt signaling pathways.

Development 135, 1283–1293.

Zheng, J., Shen, W.H., Lu, T.J., Zhou, Y., Chen, Q., Wang, Z., Xiang, T., Zhu,

Y.C., Zhang, C., Duan, S., and Xiong, Z.Q. (2008). Clathrin-dependent endocy-

tosis is required for TrkB-dependent Akt-mediated neuronal protection and

dendritic growth. J. Biol. Chem. 283, 13280–13288.

Zhou, P., Alfaro, J., Chang, E.H., Zhao, X., Porcionatto, M., and Segal, R.A.

(2011). Numb links extracellular cues to intracellular polarity machinery to pro-

mote chemotaxis. Dev. Cell 20, 610–622.
nc.

http://refhub.elsevier.com/S1534-5807(15)00251-8/sref11
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref11
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref11
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref12
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref12
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref12
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref13
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref13
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref14
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref14
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref14
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref15
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref15
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref15
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref16
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref16
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref16
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref16
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref17
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref17
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref18
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref18
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref18
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref19
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref19
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref20
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref20
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref20
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref20
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref21
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref21
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref22
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref22
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref22
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref23
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref23
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref23
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref23
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref24
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref24
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref25
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref25
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref25
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref25
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref26
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref26
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref26
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref26
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref27
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref27
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref27
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref28
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref28
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref29
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref29
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref29
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref30
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref30
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref30
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref30
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref31
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref31
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref31
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref32
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref32
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref32
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref32
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref33
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref33
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref33
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref33
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref34
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref34
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref35
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref35
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref35
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref36
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref36
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref36
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref36
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref36
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref37
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref37
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref37
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref38
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref38
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref38
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref38
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref39
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref39
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref39
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref39
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref40
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref40
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref40
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref41
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref41
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref41
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref41
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref42
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref42
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref42
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref42
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref43
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref43
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref43
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref44
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref44
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref44
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref45
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref45
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref45
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref45
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref46
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref46
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref46
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref47
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref47
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref47
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref47
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref48
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref48
http://refhub.elsevier.com/S1534-5807(15)00251-8/sref48

	Slitrk5 Mediates BDNF-Dependent TrkB Receptor Trafficking and Signaling
	Introduction
	Results
	Slitrk5 Interacts with TrkB Receptors
	BDNF Shifts Slitrk5 Binding from PTPδ to TrkB Receptors
	TrkB Receptor Signaling Is Impaired in the Striatum of Slitrk5−/− Mice
	Slitrk5 Plays a Pivotal Role in the Endocytic Recycling of TrkB Receptors
	Slitrk5 Facilitates TrkB Receptor Recruitment into Rab11 Endosomes
	Slitrk5 Facilitates Rab11-FIP3 Recruitment of TrkB Receptors to Rab11 Compartments
	Slitrk5-Mediated Rab11-FIP3 Recruitment Is Required for TrkB Recycling

	Discussion
	Experimental Procedures
	Reagents and Antibodies
	Production of Soluble PTPδ-Fc Protein and Binding Assays
	Super-Resolution Microscopy
	Analysis of Trk Receptor Recycling by using Fluorescence Ratio Microscopy
	Statistical Analyses

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


