79 research outputs found

    A thermosyphon-driven hydrothermal flow-through cell for in situ and time-resolved neutron diffraction studies

    Get PDF
    A flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 ml and can operate at temperatures up to 573 K under autogenous vapor pressures (ca 8.5 106 Pa). The fluid flow is driven by a thermosyphon, which is achieved by the proper design of temperature difference around the closed loop. The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti–Zr alloy. The cell has been successfully commissioned on Australia’s new high-intensity powder diffractometer WOMBAT at the Australian Nuclear Science and Technology Organization, using two simple phase transformation reactions from KAlSi2O6 (leucite) to NaAlSi2O6H2O (analcime) and then back from NaAlSi2O6H2O to KAlSi2O6 as examples. The demonstration proved that the cell is an excellent tool for probing hydrothermal crystallization. By collecting diffraction data every 5 min, it was clearly seen that KAlSi2O6 was progressively transformed to NaAlSi2O6H2O in a sodium chloride solution, and the produced NaAlSi2O6H2O was progressively transformed back to KAlSi2O6 in a potassium carbonate solution

    The Exposome Approach in Allergies and Lung Diseases: Is It Time to Define a Preconception Exposome?

    Get PDF
    Emerging research suggests environmental exposures before conception may adversely affect allergies and lung diseases in future generations. Most studies are limited as they have focused on single exposures, not considering that these diseases have a multifactorial origin in which environmental and lifestyle factors are likely to interact. Traditional exposure assessment methods fail to capture the interactions among environmental exposures and their impact on fundamental biological processes, as well as individual and temporal factors. A valid estimation of exposure preconception is difficult since the human reproductive cycle spans decades and the access to germ cells is limited. The exposome is defined as the cumulative measure of external exposures on an organism (external exposome), and the associated biological responses (endogenous exposome) throughout the lifespan, from conception and onwards. An exposome approach implies a targeted or agnostic analysis of the concurrent and temporal multiple exposures, and may, together with recent technological advances, improve the assessment of the environmental contributors to health and disease. This review describes the current knowledge on preconception environmental exposures as related to respiratory health outcomes in offspring. We discuss the usefulness and feasibility of using an exposome approach in this research, advocating for the preconception exposure window to become included in the exposome concept

    The aqueous chemistry of Polonium (Po) in environmental and anthropogenic processes

    No full text
    The longest-lived naturally occurring isotope of polonium is polonium-210, one of the daughters of uranium-238 (138 days half-life). As a daughter radionuclide of radon-222, polonium-210 can become enriched in pore fluids in U-bearing rocks, leading to contents in excess of 100 Bq.g in some products from the mineral, coal, oil and gas industries (e.g., anode slimes in copper refinement; sludge from the oil and gas industry). Since 2006, IAEA recommendation limits require polonium and other radionuclides from the U- and Th-series decay to be regulated for products and wastes that contain >1 Bq.g, which results in the classification of large amounts of industrial products and waste as radioactive. To develop effective methods for polonium removal and/or control, it is necessary to acquire an understanding of its aqueous chemistry. Based on a review of available experimental data, we developed a self-consistent thermochemical model for polonium in inorganic aqueous solutions. Polonium exists mainly in two oxidation states in aqueous solutions: Po(IV) and Po(II). The importance of Po(II) is unique, as Te(II) or Se(II) complexes do not appear to play a significant role in aqueous solution at room temperature. The model is used to discuss polonium speciation in some environmental and process waters

    Selective impurity removal and Cu upgrading of copper flotation concentrate by a spontaneously oxidative H2SO4 leaching process

    No full text
    The gradual decrease of global copper resources is among the most urgent challenges for the mining industry. Sustainable utilization of copper sulphide flotation concentrate from iron oxide copper gold (IOCG) deposits is often constrained by the impurity elements (e.g. U, Th and F) and high levels of gangue minerals (e.g. iron oxide/hematite, U-bearing minerals and fluorite). Herein, a spontaneous oxidative HSO leach process

    Carbonate complexation enhances hydrothermal transport of rare earth elements in alkaline fluids

    No full text
    International audienceRare earth elements (REE), essential metals for the transition to a zero-emission economy, are mostly extracted from REE-fluorcarbonate minerals in deposits associated with carbonatitic and/or peralkaline magmatism. While the role of high-temperature fluids (100 < T < 500 °C) in the development of economic concentrations of REE is well-established, the mechanisms of element transport, ore precipitation, and light (L)REE/heavy (H)REE fractionation remain a matter of debate. Here, we provide direct evidence from in-situ X-ray Absorption Spectroscopy (XAS) that the formation of hydroxyl-carbonate complexes in alkaline fluids enhances hydrothermal mobilization of LREE at T ≄ 400 °C and HREE at T ≀ 200 °C, even in the presence of fluorine. These results not only reveal that the modes of REE transport in alkaline fluids differ fundamentally from those in acidic fluids, but further underline that alkaline fluids may be key to the mineralization of hydrothermal REE-fluorcarbonates by promoting the simultaneous transport of (L)REE, fluoride and carbonate, especially in carbonatitic systems

    Uranium Transport in F-Cl-Bearing Fluids and Hydrothermal Upgrading of U-Cu Ores in IOCG Deposits

    No full text
    Uranium mineralization is commonly accompanied by enrichment of fluorite and other F-bearing minerals, leading to the hypothesis that fluoride may play a key role in the hydrothermal transport of U. In this paper, we review the thermodynamics of U(IV) and U(VI) complexing in chloride- and fluoride-bearing hydrothermal fluids and perform mineral solubility and reactive transport calculations to assess equilibrium controls on the association of F and U. Calculations of uraninite and U3O8(s) solubility in acidic F-rich (Cl : F = 100 [ppm-based]) hydrothermal fluids at 25–450°C, 600 bar, show that U(IV)-F complexes (reducing conditions) and uranyl-F complexes (oxidizing conditions) predominate at low temperature (T260°C. In contrast, the solubility of U3O8(s) increases with increasing temperatures. We evaluated the potential of low-temperature fluids to upgrade U and F concentrations in magnetite-chalcopyrite ores. In our model, an oxidized (hematite-rich) granite is the primary source of F and has elevated U concentration. Hydrothermal fluids (15 wt.% NaCl equiv.) equilibrated with this granite at 200°C react with low-grade magnetite-chalcopyrite ores. The results show that extensive alteration by these oxidized fluids is an effective mechanism for forming ore-grade Cu-U mineralization, which is accompanied by the coenrichment of fluorite. Fluorite concentrations are continuously upgraded at the magnetite-hematite transformation boundary and in the hematite ores with increasing fluid : rock (F/R) ratio. Overall, the model indicates that the coenrichment of F and U in IOCG ores reflects mainly the source of the ore-forming fluids, rather than an active role of F in controlling the metal endowment of these deposits. Our calculations also show that the common geochemical features of hematite-dominated IOCG deposits can be related to a two-phase process, whereby a magnetite-hematite-rich orebody (formed via a number of processes/tectonic settings) is enriched in Cu ± U and F during a second stage (low temperature, oxidized) of hydrothermal circulation

    Spectroscopic, Raman, EMPA, Micro-XRF and Micro-XANES Analyses of Sulphur Concentration and Oxidation State of Natural Apatite Crystals

    No full text
    Sulphur is the third most abundant volatile element in deep Earth systems. Analytical methods for accurately and efficiently determining the sulphur content and oxidation state in natural minerals are still lacking. Natural apatite is widely distributed in the Earth and incorporates a large amount of sulphur. Therefore, apatite is an ideal mineral for performing sulphur measurements. Here, we used spectroscopic, Raman, X-ray diffraction, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), electron microprobe (EMPA) and micro-X-ray fluorescence spectrometry (micro-XRF) analysis techniques and developed a new analytical approach (i.e., micro-X-ray absorption near-edge structure (micro-XANES) analysis of the sulphur K-edge) to investigate the chemical characteristics of natural apatite. These multiple methods were developed to measure in situ sulphur concentration and S oxidation states and to assess a potential natural apatite reference material. Apatite contains chemically homogeneous sulphur, with micro-XANES located at the peak energies corresponding to S6+ (sulphate; ~2482 eV), S4+ (sulfite; ~2478 eV), and S2&minus; (sulphide; ~2467, 2470 and 2474 eV). The Durango apatite contains total S presented as SO3 at amount of 0.332 &plusmn; 0.012 wt.% (1&sigma;), with a large amount of S6+ and a small contribution of S4+. The Kovdor apatite contains 44&ndash;100 ppm of S and is dominated by S6+. These results indicate that the Durango apatite crystallised under relative oxidising conditions, and the Kovdor apatite has a higher oxygen fugacity than Durango. In addition, this study indicates the potential use of the natural apatite reference material with its S composition and S oxidation state

    Terraced Iron Formations: Biogeochemical Processes Contributing to Microbial Biomineralization and Microfossil Preservation

    Get PDF
    Terraced iron formations (TIFs) are laminated structures that cover square meter-size areas on the surface of weathered bench faces and tailings piles at the Mount Morgan mine, which is a non-operational open pit mine located in Queensland, Australia. Sampled TIFs were analyzed using molecular and microanalytical techniques to assess the bacterial communities that likely contributed to the development of these structures. The bacterial community from the TIFs was more diverse compared to the tailings on which the TIFs had formed. The detection of both chemolithotrophic iron-oxidizing bacteria, i.e., Acidithiobacillus ferrooxidans and Mariprofundus ferrooxydans, and iron-reducing bacteria, i.e., Acidobacterium capsulatum, suggests that iron oxidation/reduction are continuous processes occurring within the TIFs. Acidophilic, iron-oxidizing bacteria were enriched from the TIFs. High-resolution electron microscopy was used to characterize iron biomineralization, i.e., the association of cells with iron oxyhydroxide mineral precipitates, which served as an analog for identifying the structural microfossils of individual cells as well as biofilms within iron oxyhydroxide laminations&#8212;i.e., alternating layers containing schwertmannite (Fe16O16(OH)12(SO4)2) and goethite (FeO(OH)). Kinetic modeling estimated that it would take between 0.25&#8315;2.28 years to form approximately one gram of schwertmannite as a lamination over a one-m2 surface, thereby contributing to TIF development. This length of time could correspond with seasonable rainfall or greater than average annual rainfall. In either case, the presence of water is critical for sustaining microbial activity, and subsequently iron oxyhydroxide mineral precipitation. The TIFs from the Mount Morgan mine also contain laminations of gypsum (CaSO&#183;2H2O) alternating with iron oxyhydroxide laminations. These gypsum laminations likely represented drier periods of the year, in which millimeter-size gypsum crystals presumably precipitated as water gradually evaporated. Interestingly, gypsum acted as a substrate for the attachment of cells and the growth of biofilms that eventually became mineralized within schwertmannite and goethite. The dissolution and reprecipitation of gypsum suggest that microenvironments with circumneutral pH conditions could exist within TIFs, thereby supporting iron oxidation under circumneutral pH conditions. In conclusion, this study highlights the relationship between microbes for the development of TIFs and also provides interpretations of biogeochemical processes contributing to the preservation of bacterial cells and entire biofilms under acidic conditions

    HighPGibbs, a Practical Tool for Fluid‐Rock Thermodynamic Simulation in Deep Earth and its Application on Calculating Nitrogen Speciation in Subduction Zone Fluids

    No full text
    Abstract The HighPGibbs program is designed to calculate thermodynamic equilibrium of fluid‐rock systems up to depths of lithospheric mantle. It uses the Gibbs free energy minimization function of the HCh package to calculate mineral‐fluid equilibrium. Chemical potentials of minerals are calculated using the equations of states included in HCh; free energy of aqueous species is calculated using the Deep Earth Water model; and activity coefficients of charged species are estimated using the Davies variant of the Debye‐HĂŒckel equation. HighPGibbs was applied to calculate nitrogen speciation in eclogite‐buffered fluids from 400 to 790 °C and 30 to 54 kbar, to evaluate the mobility of nitrogen in subducting oceanic crust. Regardless of whether the protolith was altered (and oxidized) or not, N2(aq) or NH3(aq) is the predominant form of nitrogen in the slab fluids at subarc temperatures, especially in cases of moderate or hot geotherms. Given that molecular nitrogen is highly incompatible in silicate minerals, the simulation indicates that nitrogen (as NH4+) in silicate minerals can be liberated during metamorphic devolatilization. The majority of nitrogen in subducting crusts can be unlocked during slab devolatilization and eventually expelled to the atmosphere via degassing of arc magmas. Therefore, oceanic crusts recycled to deep Earth will be depleted in nitrogen compared to the newly formed crust at spreading centers. As a result of the long‐term mantle convection, large proportions of the bulk silicate Earth may have suffered nitrogen extraction via subduction, and this may account for the nitrogen enrichment in the Earth's atmosphere
    • 

    corecore