121 research outputs found
Search for modulations of the solar Be-7 flux in the next-generation neutrino observatory LENA
A next-generation liquid-scintillator detector will be able to perform
high-statistics measurements of the solar neutrino flux. In LENA, solar Be-7
neutrinos are expected to cause 1.7x10^4 electron recoil events per day in a
fiducial volume of 35 kilotons. Based on this signal, a search for periodic
modulations on sub-percent level can be conducted, surpassing the sensitivity
of current detectors by at least a factor of 20. The range of accessible
periods reaches from several minutes, corresponding to modulations induced by
helioseismic g-modes, to tens of years, allowing to study long-term changes in
solar fusion rates.Comment: 15 pages, 9 figure
The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds
In this paper we discuss the latest developments of the STRIP instrument of
the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel
project that combines ground-based (STRIP) and balloon-borne (SWIPE)
polarization measurements of the microwave sky on large angular scales to
attempt a detection of the "B-modes" of the Cosmic Microwave Background
polarization. STRIP will observe approximately 25% of the Northern sky from the
"Observatorio del Teide" in Tenerife, using an array of forty-nine coherent
polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone
telescope. A second frequency channel with six-elements at 95 GHz will be
exploited as an atmospheric monitor. At present, most of the hardware of the
STRIP instrument has been developed and tested at sub-system level.
System-level characterization, starting in July 2018, will lead STRIP to be
shipped and installed at the observation site within the end of the year. The
on-site verification and calibration of the whole instrument will prepare STRIP
for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes
+ Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin
(TX
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Shedding light on typical species : implications for habitat monitoring
Habitat monitoring in Europe is regulated by Article 17 of the Habitats Directive, which suggests the use of typical species to assess habitat conservation status. Yet, the Directive uses the term “typical” species but does not provide a definition, either for its use in reporting or for its use in impact assessments. To address the issue, an online workshop was organized by the Italian Society for Vegetation Science (SISV) to shed light on the diversity of perspectives regarding the different concepts of typical species, and to discuss the possible implications for habitat monitoring. To this aim, we inquired 73 people with a very different degree of expertise in the field of vegetation science by means of a tailored survey composed of six questions. We analysed the data using Pearson's Chi-squared test to verify that the answers diverged from a random distribution and checked the effect of the degree of experience of the surveyees on the results. We found that most of the surveyees agreed on the use of the phytosociological method for habitat monitoring and of the diagnostic and characteristic species to evaluate the structural and functional conservation status of habitats. With this contribution, we shed light on the meaning of “typical” species in the context of habitat monitoring
Implementation and performances of the IPbus protocol for the JUNO Large-PMT readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino
detector currently under construction in China. Thanks to the tight
requirements on its optical and radio-purity properties, it will be able to
perform leading measurements detecting terrestrial and astrophysical neutrinos
in a wide energy range from tens of keV to hundreds of MeV. A key requirement
for the success of the experiment is an unprecedented 3% energy resolution,
guaranteed by its large active mass (20 kton) and the use of more than 20,000
20-inch photo-multiplier tubes (PMTs) acquired by high-speed, high-resolution
sampling electronics located very close to the PMTs. As the Front-End and
Read-Out electronics is expected to continuously run underwater for 30 years, a
reliable readout acquisition system capable of handling the timestamped data
stream coming from the Large-PMTs and permitting to simultaneously monitor and
operate remotely the inaccessible electronics had to be developed. In this
contribution, the firmware and hardware implementation of the IPbus based
readout protocol will be presented, together with the performances measured on
final modules during the mass production of the electronics
Mass testing of the JUNO experiment 20-inch PMTs readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a multi-purpose,
large size, liquid scintillator experiment under construction in China. JUNO
will perform leading measurements detecting neutrinos from different sources
(reactor, terrestrial and astrophysical neutrinos) covering a wide energy range
(from 200 keV to several GeV). This paper focuses on the design and development
of a test protocol for the 20-inch PMT underwater readout electronics,
performed in parallel to the mass production line. In a time period of about
ten months, a total number of 6950 electronic boards were tested with an
acceptance yield of 99.1%
Validation and integration tests of the JUNO 20-inch PMTs readout electronics
The Jiangmen Underground Neutrino Observatory (JUNO) is a large neutrino
detector currently under construction in China. JUNO will be able to study the
neutrino mass ordering and to perform leading measurements detecting
terrestrial and astrophysical neutrinos in a wide energy range, spanning from
200 keV to several GeV. Given the ambitious physics goals of JUNO, the
electronic system has to meet specific tight requirements, and a thorough
characterization is required. The present paper describes the tests performed
on the readout modules to measure their performances.Comment: 20 pages, 13 figure
- …