8 research outputs found

    Exploring the effects of numerical methods and slope limiters in heliospheric modeling

    Full text link
    Coronal mass ejections (CMEs) are large eruptions close to the solar surface, where plasma is ejected outwards into space at large speeds. When directed towards Earth, they interfere with Earth's magnetic fields and cause strong geo-effective storms. In order to mitigate the potential damage, forecasting tools are implemented. Recently, a novel heliospheric modelling tool, Icarus, has been implemented, which exploits the open-source framework MPI-AMRVAC as its core MHD solver. This new model efficiently performs 3D MHD simulations of the solar wind and the evolution of interplanetary CMEs with the help of advanced techniques, such as adaptive mesh refinement and gradual radial grid stretching. The numerical methods applied in the simulations can have significant effects on the simulation results and on the efficiency of the model. In this study, the effect of different combinations of numerical schemes and slope limiters, for reconstructing edge-based variabes used in fluxes, is considered. We explore frequently exploited combinations from the available numerical schemes in MPI-AMRVAC: TVDLF, HLL and HLLC along with the slope limiters 'woodward', 'minmod', 'vanleer', and 'koren'. For analysis purposes, we selected one particular solar wind configuration and studied the influence on variables at 1 AU in the equatorial plane. The goal is to find the optimal combination to produce accurate results fast and in a robust way so that the model can be reliable for day-to-day use by space weather scientists. As a conclusion, the best result assessed with these two criteria is the combination of the TVDLF scheme with the 'woodward' limiter.Comment: 17 pages, 9 figures, 4 tables, to appear in Sun and Geospher

    A binary with a δ\delta~Scuti star and an oscillating red giant: orbit and asteroseismology of KIC9773821

    Get PDF
    We study the δ\delta Scuti -- red giant binary KIC9773821, the first double-pulsator binary of its kind. It was observed by \textit{Kepler} during its four-year mission. Our aims are to ascertain whether the system is bound, rather than a chance alignment, and to identify the evolutionary state of the red giant via asteroseismology. An extension of these aims is to determine a dynamical mass and an age prior for a δ\delta Sct star, which may permit mode identification via further asteroseismic modelling. We determine spectroscopic parameters and radial velocities (RVs) for the red giant component using HERMES@Mercator spectroscopy. Light arrival-time delays from the δ\delta Sct pulsations are used with the red-giant RVs to determine that the system is bound and to infer its orbital parameters, including the binary mass ratio. We use asteroseismology to model the individual frequencies of the red giant to give a mass of 2.10−0.10+0.202.10^{+0.20}_{-0.10} M⊙_{\odot} and an age of 1.08−0.24+0.061.08^{+0.06}_{-0.24} Gyr. We find that it is a helium-burning secondary clump star, confirm that it follows the standard νmax\nu_{\rm max} scaling relation, and confirm its observed period spacings match their theoretical counterparts in the modelling code MESA. Our results also constrain the mass and age of the δ\delta Sct star. We leverage these constraints to construct δ\delta Sct models in a reduced parameter space and identify four of its five pulsation modes.Comment: Accepted for publication in MNRA

    EUropean Heliospheric FORecasting Information Asset 2.0

    Get PDF
    Aims: This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods: We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results: The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models

    EUropean Heliospheric FORecasting Information Asset 2.0

    Get PDF
    Aims: This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods: We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results: The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models.</p

    COCONUT, a Novel Fast-converging MHD Model for Solar Corona Simulations. II. Assessing the Impact of the Input Magnetic Map on Space-weather Forecasting at Minimum of Activity

    No full text
    This paper is dedicated to the new implicit unstructured coronal code COCONUT, which aims at providing fast and accurate inputs for space-weather forecasting as an alternative to empirical models. We use all 20 available magnetic maps of the solar photosphere covering the date of 2019 July 2, which corresponds to a solar eclipse on Earth. We use the same standard preprocessing on all maps, then perform coronal MHD simulations with the same numerical and physical parameters. We conclude by quantifying the performance of each map using three indicators from remote-sensing observations: white-light total solar eclipse images for the streamers’ edges, EUV synoptic maps for coronal holes, and white-light coronagraph images for the heliospheric current sheet. We discuss the performance of space-weather forecasting and show that the choice of the input magnetic map has a strong impact. We find performances between 24% and 85% for the streamers’ edges, 24%–88% for the coronal hole boundaries, and a mean deviation between 4° and 12° for the heliospheric current sheet position. We find that the HMI runs perform better on all indicators, with GONG-ADAPT being the second-best choice. HMI runs perform better for the streamers’ edges, and GONG-ADAPT for polar coronal holes, HMI synchronic for equatorial coronal holes, and the streamer belt. We especially illustrate the importance of the filling of the poles. This demonstrates that the solar poles have to be taken into account even for ecliptic plane previsions

    COCONUT, a Novel Fast-converging MHD Model for Solar Corona Simulations. III. Impact of the Preprocessing of the Magnetic Map on the Modeling of the Solar Cycle Activity and Comparison with Observations

    No full text
    We developed a novel global coronal COCONUT (Coolfluid Corona Unstructured) model based on the COOLFluiD code. The steady-state model is predetermined by magnetograms set as boundary conditions, while inside the numerical domain the corona is described by MHD equations. This set of equations is solved with the use of an implicit solver on unstructured grids. Here we present numerically obtained results for two extremes of the solar activity cycle represented by CR 2161 and CR 2219 for solar maximum and minimum, respectively. We discuss the impact of reconstruction level on representative solar corona solutions and thus also the impact of small magnetic structures on the overall structure of the solar wind. Moreover, both cases correspond to particular solar eclipses, namely those in 2015 March and 2019 July, to allow us the direct comparison of simulations with observed coronal features. We use a validation scheme proposed by Wagner et al. (from less to more sophisticated methods, i.e., visual classification, feature matching, streamer direction and width, brute force matching, topology classification). The detailed comparison with observations reveals that our model recreates relevant features such as the position, direction, and shape of the streamers (by comparison with white-light images) and the coronal holes (by comparison with extreme ultraviolet images) for both cases of minimum and maximum solar activity. We conclude that an unprecedented combination of accuracy, computational speed and robustness even in the case of maximum activity is accomplished at this stage, with possible further improvements in a foreseeable perspective

    EUropean Heliospheric FORecasting Information Asset 2.0

    Get PDF
    Aims: This paper presents a H2020 project aimed at developing an advanced space weather forecasting tool, combining the MagnetoHydroDynamic (MHD) solar wind and coronal mass ejection (CME) evolution modelling with solar energetic particle (SEP) transport and acceleration model(s). The EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast geomagnetically induced currents (GICs) and radiation on geospace. Methods: We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely (1) data-driven flux-rope CME models, and (2) physics-based, self-consistent SEP models for the acceleration and transport of particles along and across the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for GICs and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (VSWMC, ESA) and the space weather forecasting procedures at the ESA SSCC in Ukkel (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results: The results of the first six months of the EU H2020 project are presented here. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models.Peer reviewe

    EUropean Heliospheric FORecasting Information Asset 2.0

    No full text
    Aims This H2020 project aims at developing the world’s most advanced space weather forecasting tool, combining the MHD solar wind and CME evolution modelling with Solar Energetic Particle (SEP) transport and acceleration model(s). The ambitious EUHFORIA 2.0 project will address the geoeffectiveness of impacts and mitigation to avoid (part of the) damage, including that of extreme events, related to solar eruptions, solar wind streams, and SEPs, with particular emphasis on its application to forecast Geomagnetically Induced Currents (GICs) and radiation on geospace. Methods We will apply innovative methods and state-of-the-art numerical techniques to extend the recent heliospheric solar wind and CME propagation model EUHFORIA with two integrated key facilities that are crucial for improving its predictive power and reliability, namely 1) data-driven flux-rope CME models, and 2) physics-based, self-consistent SEP models for the acceleration and transport of particles along the magnetic field lines. This involves the novel coupling of advanced space weather models. In addition, after validating the upgraded EUHFORIA/SEP model, it will be coupled to existing models for geomagnetically induced currents (GICs) and atmospheric radiation transport models. This will result in a reliable prediction tool for radiation hazards from SEP events, affecting astronauts, passengers and crew in high-flying aircraft, and the impact of space weather events on power grid infrastructure, telecommunication, and navigation satellites. Finally, this innovative tool will be integrated into both the Virtual Space Weather Modeling Centre (ESA) and the space weather forecasting procedures at the ESA SSCC in Uccle (Belgium), so that it will be available to the space weather community and effectively used for improved predictions and forecasts of the evolution of CME magnetic structures and their impact on Earth. Results The EU H2020 project started six months ago, and the first results are very promising. These concern alternative coronal models, the application of adaptive mesh refinement techniques in the heliospheric part of EUHFORIA, alternative flux-rope CME models, evaluation of data-assimilation based on Karman filtering for the solar wind modelling, and a feasibility study of the integration of SEP models.OPEN ACCESSstatus: publishe
    corecore