12 research outputs found

    Physical and functional interactions between human mitochondrial single-stranded DNA-binding protein and tumour suppressor p53

    Get PDF
    Single-stranded DNA-binding proteins (SSB) form a class of proteins that bind preferentially single-stranded DNA with high affinity. They are involved in DNA metabolism in all organisms and serve a vital role in replication, recombination and repair of DNA. In this report, we identify human mitochondrial SSB (HmtSSB) as a novel protein-binding partner of tumour suppressor p53, in mitochondria. It binds to the transactivation domain (residues 1–61) of p53 via an extended binding interface, with dissociation constant of 12.7 (± 0.7) μM. Unlike most binding partners reported to date, HmtSSB interacts with both TAD1 (residues 1–40) and TAD2 (residues 41–61) subdomains of p53. HmtSSB enhances intrinsic 3′-5′ exonuclease activity of p53, particularly in hydrolysing 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) present at 3′-end of DNA. Taken together, our data suggest that p53 is involved in DNA repair within mitochondria during oxidative stress. In addition, we characterize HmtSSB binding to ssDNA and p53 N-terminal domain using various biophysical measurements and we propose binding models for both

    The Xenopus laevis mitochondrial protein mtDBP-C cooperatively folds the DNA in vitro

    No full text
    International audienceThe binding of the Xenopus laevis mitochondrial protein mtDBP-C to DNA was studied by equilibrium density banding, agarose gel electrophoresis and electron microscopy. The results obtained show that the mtDBP-C binds cooperatively to DNA irrespective of whether the DNA is supercoiled, relaxed or linear and it induces the formation of superhelical turns locally leading to the formation of a highly folded structure. It appears that this protein could be involved in the compaction of DNA in the mitochondrial nucleoid

    The Xenopus laevis mitochondrial protein mtDBP-C cooperatively folds the DNA in vitro.

    No full text
    The binding of the Xenopus laevis mitochondrial protein mtDBP-C to DNA was studied by equilibrium density banding, agarose gel electrophoresis and electron microscopy. The results obtained show that the mtDBP-C binds cooperatively to DNA irrespective of whether the DNA is supercoiled, relaxed or linear and it induces the formation of superhelical turns locally leading to the formation of a highly folded structure. It appears that this protein could be involved in the compaction of DNA in the mitochondrial nucleoid

    The amino-terminal sequence of the Xenopus laevis mitochondrial SSB is homologous to that of the Escherichia coli protein

    Get PDF
    International audienceTwo closely related forms of the single-stranded DNA binding protein purified from Xenopus laevis oocytes mitochondria have been identified. Their amino terminal sequences exhibit homology with the Escherichia co/i SSB protein
    corecore