215 research outputs found

    A new genus of Podonominae (Diptera: Chironomidae) in Late Eocene Rovno amber from Ukraine

    Get PDF
    The genus Palaeoboreochlus Baranov et Andersen, n. gen. is erected based on P. inornatus Baranov et Andersen, n. sp. described from a male found in Late Eocene Rovno amber. The new genus groups with Boreochlus Edwards in the tribe "Boreochlini".publishedVersio

    New classes of hypercyclic Toeplitz operators

    Full text link
    We study hypercyclicity of Toeplitz operators in the Hardy space H2(D)H^2(\mathbb{D}) with symbols of the form R(z‾)+ϕ(z)R(\overline{z}) +\phi(z), where RR is a rational function and ϕ∈H∞(D)\phi \in H^\infty(\mathbb{D}). We relate this problem to cyclicity of certain families of functions for analytic Toeplitz operators and give new sufficient conditions for hypercyclicity based on deep results of B. Solomyak.Comment: 12 pages, 2 figure

    First record of gynandromorphy in fossil Chironomidae (Diptera) from Late Eocene Rovno amber

    Get PDF

    Upper bounds on collective light-matter coupling strength with plasmonic meta-atoms

    Full text link
    Ultrastrong coupling between optical and material excitations is a distinct regime of electromagnetic interaction that enables a variety of intriguing physical phenomena. Traditional ways to ultrastrong light-matter coupling involve the use of some sorts of quantum emitters, such as organic dyes, quantum wells, superconducting artificial atoms, or transitions of two-dimensional electron gases. Often, reaching the ultrastrong coupling domain requires special conditions, including high vacuum, strong magnetic fields, and extremely low temperatures. Recent report indicate that a high degree of light-matter coupling can be attained at ambient conditions with plasmonic meta-atoms -- artificial metallic nanostructures that replace quantum emitters. Yet, the fundamental limits on the coupling strength imposed on such systems have not been identified. Here, using a Hamiltonian approach we theoretically analyze the formation of polaritonic states and examine the upper limits of the collective plasmon-photon coupling strength in a number of dense assemblies of plasmonic meta-atoms. Starting off with spheres, we identify the universal upper bounds on the normalized collective coupling strength g/ω0g/\omega_0 between ensembles of plasmonic meta-atoms and free-space photons. Next, we examine spheroidal metallic meta-atoms and show that a strongly elongated meta-atom is the optimal geometry for attaining the highest value of the collective coupling strength in the array of meta-atoms. The results could be valuable for the field of polaritonics studies, quantum technology, and modifying material properties

    35 million-year-old solid-wood-borer beetle larvae support the idea of stressed Eocene amber forests

    Get PDF
    Eocene amber is an important window into the past about 35 million years ago. The large quantities of resin produced by this forest of the past, resulting in amber, triggered the idea of a forest under stress. Recent findings of higher abundances of hoverfly larvae in Eocene amber, in the modern fauna often associated with wood-borer larvae, provided a hint that wood-borer larvae may have contributed to this stress. Yet, so far only few such larvae have been reported. We have compiled a dozen additional wood-borer larvae in amber, including a giant one of at least 35 mm length in Rovno amber. Heavily damaged fossils furthermore indicate that larger larvae of this type were prone to oxidation and that, at least some, enigmatic tube-like tunnels in larger amber pieces may represent remains of large wood-borer larvae. This find strongly indicates that wood-borer larvae were not rare, but common in the Eocene amber forest, which is compatible with the high abundances of hoverfly larvae and further supports the idea of a forest under stress. Whether the possible higher abundances of wood-borer larvae were the cause of the stress or a symptom of an already stressed forest remains so far unclear

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Measurement of the B0s→μ+μ− Branching Fraction and Effective Lifetime and Search for B0→μ+μ− Decays

    Get PDF
    A search for the rare decays Bs0→μ+μ- and B0→μ+μ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb-1. An excess of Bs0→μ+μ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ- effective lifetime, τ(Bs0→μ+μ-)=2.04±0.44±0.05  ps, is reported. No significant excess of B0→μ+μ- decays is found, and a 95% confidence level upper limit, B(B0→μ+μ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays Bs0→μ+μ−B^0_s\to\mu^+\mu^- and B0→μ+μ−B^0\to\mu^+\mu^- is performed at the LHCb experiment using data collected in pppp collisions corresponding to a total integrated luminosity of 4.4 fb−1^{-1}. An excess of Bs0→μ+μ−B^0_s\to\mu^+\mu^- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ−)=(3.0±0.6−0.2+0.3)×10−9{\cal B}(B^0_s\to\mu^+\mu^-)=\left(3.0\pm 0.6^{+0.3}_{-0.2}\right)\times 10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ−B^0_s\to\mu^+\mu^- effective lifetime, τ(Bs0→μ+μ−)=2.04±0.44±0.05\tau(B^0_s\to\mu^+\mu^-)=2.04\pm 0.44\pm 0.05 ps, is reported. No significant excess of B0→μ+μ−B^0\to\mu^+\mu^- decays is found and a 95 % confidence level upper limit, B(B0→μ+μ−)<3.4×10−10{\cal B}(B^0\to\mu^+\mu^-)<3.4\times 10^{-10}, is determined. All results are in agreement with the Standard Model expectations
    • …
    corecore