128 research outputs found

    New polymorph of InVO4: A high-pressure structure with six-coordinated vanadium

    Full text link
    This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Inorganic Chemestry, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/ic402043xA new wolframite-type polymorph of InVO4 is identified under compression near 7 GPa by in situ high-pressure (HP) X-ray diffraction (XRD) and Raman spectroscopic investigations on the stable orthorhombic InVO4. The structural transition is accompanied by a large volume collapse (Delta V/V = -14%) and a drastic increase in bulk modulus (from 69 to 168 GPa). Both techniques also show the existence of a third phase coexisting with the low- and high-pressure phases in a limited pressure range close to the transition pressure. XRD studies revealed a highly anisotropic compression in orthorhombic InVO4. In addition, the compressibility becomes nonlinear in the HP polymorph. The volume collapse in the lattice is related to an increase of the polyhedral coordination around the vanadium atoms. The transformation is not fully reversible. The drastic change in the polyhedral arrangement observed at the transition is indicative of a reconstructive phase transformation. The HP phase here found is the only modification of InVO4 reported to date with 6-fold coordinated vanadium atoms. Finally, Raman frequencies and pressure coefficients in the low- and high-pressure phases of InVO4 are reported.This research supported by the Spanish government MINECO under Grant Nos. MAT2010-21270-C04-01/04 and CSD2007-00045. O.G. acknowledges support from Vicerrectorado de Investigacion y Desarrollo of UPV (Grant No. UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11). S.N.A. acknowledges support provided by Universitat de Valencia during his visit to it. B.G.-D. acknowledges the financial support from MINECO through the FPI program.Errandonea, D.; Gomis Hilario, O.; García-Domene, B.; Pellicer Porres, J.; Katari, V.; Achary, SN.; Tyagi, AK.... (2013). New polymorph of InVO4: A high-pressure structure with six-coordinated vanadium. Inorganic Chemistry. 52(21):12790-12798. https://doi.org/10.1021/ic402043xS1279012798522

    BioMart Central Portal: an open database network for the biological community

    Get PDF
    BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities

    Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles

    Get PDF
    Saliva is a readily accessible and informative biofluid, making it ideal for the early detection of a wide range of diseases including cardiovascular, renal, and autoimmune diseases, viral and bacterial infections and, importantly, cancers. Saliva-based diagnostics, particularly those based on metabolomics technology, are emerging and offer a promising clinical strategy, characterizing the association between salivary analytes and a particular disease. Here, we conducted a comprehensive metabolite analysis of saliva samples obtained from 215 individuals (69 oral, 18 pancreatic and 30 breast cancer patients, 11 periodontal disease patients and 87 healthy controls) using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We identified 57 principal metabolites that can be used to accurately predict the probability of being affected by each individual disease. Although small but significant correlations were found between the known patient characteristics and the quantified metabolites, the profiles manifested relatively higher concentrations of most of the metabolites detected in all three cancers in comparison with those in people with periodontal disease and control subjects. This suggests that cancer-specific signatures are embedded in saliva metabolites. Multiple logistic regression models yielded high area under the receiver-operating characteristic curves (AUCs) to discriminate healthy controls from each disease. The AUCs were 0.865 for oral cancer, 0.973 for breast cancer, 0.993 for pancreatic cancer, and 0.969 for periodontal diseases. The accuracy of the models was also high, with cross-validation AUCs of 0.810, 0.881, 0.994, and 0.954, respectively. Quantitative information for these 57 metabolites and their combinations enable us to predict disease susceptibility. These metabolites are promising biomarkers for medical screening

    Toward osteogenic differentiation of marrow stromal cells and in vitro production of mineralized extracellular matrix onto natural scaffolds

    Get PDF
    Uncorrected proofTissue engineering has emerged as a new interdisciplinary field for the repair of various tissues, restoring their functions by using scaffolds, cells, and/or bioactive factors. A temporary scaffold acts as an extracellular matrix analog to culture cells and guide the development of new tissue. In this chapter, we discuss the preparation of naturally derived scaffolds of polysaccharide origin, the osteogenic differentiation of mesenchymal stem cells cultured on biomimetic calcium phosphate coatings, and the delivery of biomolecules associated with extracellular matrix mineralization

    Intermittent Hypoxia-Induced Cognitive Deficits Are Mediated by NADPH Oxidase Activity in a Murine Model of Sleep Apnea

    Get PDF
    Background: In rodents, exposure to intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with neurobehavioral impairments, increased apoptosis in the hippocampus and cortex, as well as increased oxidant stress and inflammation. Excessive NADPH oxidase activity may play a role in IH-induced CNS dysfunction. Methods and Findings: The effect of IH during light period on two forms of spatial learning in the water maze and well as markers of oxidative stress was assessed in mice lacking NADPH oxidase activity (gp91phox _/Y) and wild-type littermates. On a standard place training task, gp91phox _/Y displayed normal learning, and were protected from the spatial learning deficits observed in wild-type littermates exposed to IH. Moreover, anxiety levels were increased in wild-type mice exposed to IH as compared to room air (RA) controls, while no changes emerged in gp91phox _/Y mice. Additionally, wild-type mice, but not gp91phox _/Y mice had significantly elevated levels of NADPH oxidase expression and activity, as well as MDA and 8-OHDG in cortical and hippocampal lysates following IH exposures. Conclusions: The oxidative stress responses and neurobehavioral impairments induced by IH during sleep are mediated, at least in part, by excessive NADPH oxidase activity, and thus pharmacological agents targeting NADPH oxidase may provid

    Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-associated dermatologic toxicities

    Get PDF
    Background Epidermal growth factor receptor inhibitors (EGFRI) produce various dermatologic side effects in the majority of patients, and guidelines are crucial for the prevention and treatment of these untoward events. The purpose of this panel was to develop evidence-based recommendations for EGFRI-associated dermatologic toxicities. Methods A multinational, interdisciplinary panel of experts in supportive care in cancer reviewed pertinent studies using established criteria in order to develop first-generation recommendations for EGFRI-associated dermatologic toxicities. Results Prophylactic and reactive recommendations for papulopustular (acneiform) rash, hair changes, radiation dermatitis, pruritus, mucositis, xerosis/fissures, and paronychia are presented, as well as general dermatologic recommendations when possible. Conclusion Prevention and management of EGFRI-related dermatologic toxicities is critical to maintain patients’ health-related quality of life and dose intensity of antineoplastic regimens. More rigorous investigation of these toxicities is warranted to improve preventive and treatment strategies

    Evaluation of molecular methods for the field study of the natural history of Dicrocoelium dendriticum

    Get PDF
    There is a need for improved methods for the study of the impacts of climatic and livestock management change on the epidemiology of production-limiting helminth parasitic diseases. In this study we report the application of molecular methods to describe the natural history of the small lancet fluke, Dicrocoelium dendriticum on Machair pastures on the Inner Hebridean Isle of Coll. Our results build upon those of the only previous historic field study of D. dendriticum in the British Isles that had been undertaken on the same study site. We demonstrate the value of combining conventional parasitological methods with PCR amplification of a mitochondrial DNA fragment for the detection of D. dendriticum in ants and snails, and PCR amplification of ITS2 and 28S ribosomal DNA fragments to support the species identity of the intermediate hosts, to improving understanding of the epidemiology of D. dendriticum. We report the presence of D. dendriticum infection in cattle, sheep and rabbits grazing on Machair pastures. D. dendriticum infection was identified in a high percentage of the snails, identified as Cochlicella acuta and Cernuella virgata, and in a high percentage of Formica fusca and Myrmica ruginoides ants that were collected from, or clinging to, the tops of flowers. We have identified the involvement of different intermediate host species and higher prevalences of snail and ant infection than previously reported, in part reflecting differences between the sensitivity and specificity of morphological and molecular speciation methods. Overall, our results highlight the complex life history of dicrocoeliosis and illustrate the parasite’s generalist host strategy that confers potential to exploit new niches created by climatic change or grazing management for habitat conservation
    corecore