197 research outputs found

    Dust Impacts on the 2012 Hurricane Nadine Track During the NASA HS3 Field Campaign

    Get PDF
    During the 2012 deployment of the NASA Hurricane and Severe Storm Sentinel (HS3) field campaign, several flights were dedicated to investigating Hurricane Nadine. Hurricane Nadine developed in close proximity to the dust-laden Saharan Air Layer, and is the fourth longest-lived Atlantic hurricane on record, experiencing two strengthening and weakening periods during its 22-day total lifecycle as a tropical cyclone. In this study, the NASA GEOS-5 atmospheric general circulation model and data assimilation system was used to simulate the impacts of dust during the first intensification and weakening phases of Hurricane Nadine using a series of GEOS-5 forecasts initialized during Nadine's intensification phase (12 September 2012). The forecasts explore a hierarchy of aerosol interactions within the model: no aerosol interaction, aerosol-radiation interactions, and aerosol-radiation and aerosol-cloud interactions simultaneously, as well as variations in assumed dust optical properties. When only aerosol-radiation interactions are included, Nadine's track exhibits sensitivity to dust shortwave absorption, as a more absorbing dust introduces a shortwave temperature perturbation that impacts Nadine's structure and steering flow, leading to a northward track divergence after 5 days of simulation time. When aerosol-cloud interactions are added, the track exhibits little sensitivity to dust optical properties. This result is attributed to enhanced longwave atmospheric cooling from clouds that counters shortwave atmospheric warming by dust surrounding Nadine, suggesting that aerosol-cloud interactions are a more significant influence on Nadine's track than aerosol-radiation interactions. These findings demonstrate that tropical systems, specifically their track, can be impacted by dust interaction with the atmosphere

    Degeneracy Algorithm for Random Magnets

    Full text link
    It has been known for a long time that the ground state problem of random magnets, e.g. random field Ising model (RFIM), can be mapped onto the max-flow/min-cut problem of transportation networks. I build on this approach, relying on the concept of residual graph, and design an algorithm that I prove to be exact for finding all the minimum cuts, i.e. the ground state degeneracy of these systems. I demonstrate that this algorithm is also relevant for the study of the ground state properties of the dilute Ising antiferromagnet in a constant field (DAFF) and interfaces in random bond magnets.Comment: 17 pages(Revtex), 8 Postscript figures(5color) to appear in Phys. Rev. E 58, December 1st (1998

    Disorder, Order, and Domain Wall Roughening in the 2d Random Field Ising Model

    Get PDF
    Ground states and domain walls are investigated with exact combinatorial optimization in two-dimensional random field Ising magnets. The ground states break into domains above a length scale that depends exponentially on the random field strength squared. For weak disorder, this paramagnetic structure has remnant long-range order of the percolation type. The domain walls are super-rough in ordered systems with a roughness exponent ζ\zeta close to 6/5. The interfaces exhibit rare fluctuations and multiscaling reminiscent of some models of kinetic roughening and hydrodynamic turbulence.Comment: to be published in Phys.Rev.E/Rapid.Com

    Regiones del cromosoma 5 asociadas a características de crecimiento en ganado criollo romosinuano

    Get PDF
    El crecimiento es una de las características de naturaleza cuantitativa que influye en la calidad de la canal. En el presente estudio se identificaron las regiones cromosomales responsables para la variación del crecimiento en el cromosoma 5 en una población de ganado criollo romosinuano. Se evaluaron en 72 progenies las características de peso al nacimiento, peso al destete, peso a los 12 meses y a los 16 meses, área de ojo del lomo a los 12 y 16 meses, espesor de grasa dorsal a los 12 y 16 meses, espesor de grasa del anca a los 12 y 16 meses, ganancia diaria predestete y posdestete, al igual que los genotipos de tres polimorfismos de nucleótido simple de los genes MYF5, PDE1B e IGF1 y de cuatro microsatélites BM6026, CSSM34, RM500, ETH10, distribuidos a lo largo del cromosoma. Se realizó un análisis de regresión linear el cual mostró el efecto de seis loci de rasgos cuantitativos (QTL) asociados a características de crecimiento. Cinco QTL fueron significativos (p≤0,05) para las características de peso al nacimiento, peso a los 16 meses, área del ojo de lomo a los 12 y 16 meses y ganancia diaria posdestete y un QTL se encontró con una significancia de p≤0,01 para la característica ganancia diaria predestete. Los resultados demostraron que los genes MYF5, PDE1B, IGF1 pueden ser genes candidatos posicionales que inciden en la variación del crecimiento para la calidad de la canal en el ganado romosinuano

    Network 'small-world-ness': a quantitative method for determining canonical network equivalence

    Get PDF
    Background: Many technological, biological, social, and information networks fall into the broad class of 'small-world' networks: they have tightly interconnected clusters of nodes, and a shortest mean path length that is similar to a matched random graph (same number of nodes and edges). This semi-quantitative definition leads to a categorical distinction ('small/not-small') rather than a quantitative, continuous grading of networks, and can lead to uncertainty about a network's small-world status. Moreover, systems described by small-world networks are often studied using an equivalent canonical network model-the Watts-Strogatz (WS) model. However, the process of establishing an equivalent WS model is imprecise and there is a pressing need to discover ways in which this equivalence may be quantified. Methodology/Principal Findings: We defined a precise measure of 'small-world-ness' S based on the trade off between high local clustering and short path length. A network is now deemed a 'small-world' if S. 1-an assertion which may be tested statistically. We then examined the behavior of S on a large data-set of real-world systems. We found that all these systems were linked by a linear relationship between their S values and the network size n. Moreover, we show a method for assigning a unique Watts-Strogatz (WS) model to any real-world network, and show analytically that the WS models associated with our sample of networks also show linearity between S and n. Linearity between S and n is not, however, inevitable, and neither is S maximal for an arbitrary network of given size. Linearity may, however, be explained by a common limiting growth process. Conclusions/Significance: We have shown how the notion of a small-world network may be quantified. Several key properties of the metric are described and the use of WS canonical models is placed on a more secure footing

    AmrZ is a major determinant of c-di-GMP levels in Pseudomonas fluorescens F113

    Get PDF
    The transcriptional regulator AmrZ is a global regulatory protein conserved within the pseudomonads. AmrZ can act both as a positive and a negative regulator of gene expression, controlling many genes implicated in environmental adaption. Regulated traits include motility, iron homeostasis, exopolysaccharides production and the ability to form biofilms. In Pseudomonas fluorescens F113, an amrZ mutant presents a pleiotropic phenotype, showing increased swimming motility, decreased biofilm formation and very limited ability for competitive colonization of rhizosphere, its natural habitat. It also shows different colony morphology and binding of the dye Congo Red. The amrZ mutant presents severely reduced levels of the messenger molecule cyclic-di-GMP (c-di-GMP), which is consistent with the motility and biofilm formation phenotypes. Most of the genes encoding proteins with diguanylate cyclase (DGCs) or phosphodiesterase (PDEs) domains, implicated in c-di-GMP turnover in this bacterium, appear to be regulated by AmrZ. Phenotypic analysis of eight mutants in genes shown to be directly regulated by AmrZ and encoding c-di-GMP related enzymes, showed that seven of them were altered in motility and/or biofilm formation. The results presented here show that in P. fluorescens, AmrZ determines c-di-GMP levels through the regulation of a complex network of genes encoding DGCs and PDEs

    Belief Propagation and Loop Series on Planar Graphs

    Full text link
    We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of [1, 2] is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation [3], to evaluating the partition function of the dimer matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn [4]. This allows to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed.Comment: Accepted for publication in Journal of Statistical Mechanics: theory and experimen

    Effect of Network Architecture on Synchronization and Entrainment Properties of the Circadian Oscillations in the Suprachiasmatic Nucleus

    Get PDF
    In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus constitutes the central circadian pacemaker. The SCN receives light signals from the retina and controls peripheral circadian clocks (located in the cortex, the pineal gland, the liver, the kidney, the heart, etc.). This hierarchical organization of the circadian system ensures the proper timing of physiological processes. In each SCN neuron, interconnected transcriptional and translational feedback loops enable the circadian expression of the clock genes. Although all the neurons have the same genotype, the oscillations of individual cells are highly heterogeneous in dispersed cell culture: many cells present damped oscillations and the period of the oscillations varies from cell to cell. In addition, the neurotransmitters that ensure the intercellular coupling, and thereby the synchronization of the cellular rhythms, differ between the two main regions of the SCN. In this work, a mathematical model that accounts for this heterogeneous organization of the SCN is presented and used to study the implication of the SCN network topology on synchronization and entrainment properties. The results show that oscillations with larger amplitude can be obtained with scale-free networks, in contrast to random and local connections. Networks with the small-world property such as the scale-free networks used in this work can adapt faster to a delay or advance in the light/dark cycle (jet lag). Interestingly a certain level of cellular heterogeneity is not detrimental to synchronization performances, but on the contrary helps resynchronization after jet lag. When coupling two networks with different topologies that mimic the two regions of the SCN, efficient filtering of pulse-like perturbations in the entrainment pattern is observed. These results suggest that the complex and heterogeneous architecture of the SCN decreases the sensitivity of the network to short entrainment perturbations while, at the same time, improving its adaptation abilities to long term changes

    Building the genomic nation: ‘Homo Brasilis’ and the ‘Genoma Mexicano’ in comparative cultural perspective

    Get PDF
    This article explores the relationship between genetic research, nationalism and the construction of collective social identities in Latin America. It makes a comparative analysis of two research projects – the ‘Genoma Mexicano’ and the ‘Homo Brasilis’ – both of which sought to establish national and genetic profiles. Both have reproduced and strengthened the idea of their respective nations of focus, incorporating biological elements into debates on social identities. Also, both have placed the unifying figure of the mestizo/mestiço at the heart of national identity constructions, and in so doing have displaced alternative identity categories, such as those based on race. However, having been developed in different national contexts, these projects have had distinct scientific and social trajectories: in Mexico, the genomic mestizo is mobilized mainly in relation to health, while in Brazil the key arena is that of race. We show the importance of the nation as a frame for mobilizing genetic data in public policy debates, and demonstrate how race comes in and out of focus in different Latin American national contexts of genomic research, while never completely disappearing
    • …
    corecore