416 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART): Study protocol for a randomized controlled trial

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.Hospital do Coracao (HCor) as part of the Program 'Hospitais de Excelencia a Servico do SUS (PROADI-SUS)'Brazilian Ministry of Healt

    Fungal planet description sheets: 716–784

    No full text
    Novel species of fungi described in this study include those from various countries as follows: Australia, Chaetopsina eucalypti on Eucalyptus leaf litter, Colletotrichum cobbittiense from Cordyline stricta × C. australis hybrid, Cyanodermella banksiae on Banksia ericifolia subsp. macrantha, Discosia macrozamiae on Macrozamia miquelii, ElsinoĂ« banksiigena on Banksia marginata, ElsinoĂ« elaeocarpi on Elaeocarpus sp., ElsinoĂ« leucopogonis on Leucopogon sp., Helminthosporium livistonae on Livistona australis, Idriellomyces eucalypti (incl. Idriellomyces gen. nov.) on Eucalyptus obliqua, Lareunionomyces eucalypti on Eucalyptus sp., Myrotheciomyces corymbiae (incl. Myrotheciomyces gen. nov., Myrotheciomycetaceae fam. nov.), Neolauriomyces eucalypti (incl. Neolauriomyces gen. nov., Neolauriomycetaceae fam. nov.) on Eucalyptus sp., Nullicamyces eucalypti (incl. Nullicamyces gen. nov.) on Eucalyptus leaf litter, Oidiodendron eucalypti on Eucalyptus maidenii, Paracladophialophora cyperacearum (incl. Paracladophialophoraceae fam. nov.) and Periconia cyperacearum on leaves of Cyperaceae, Porodiplodia livistonae (incl. Porodiplodia gen. nov., Porodiplodiaceae fam. nov.) on Livistona australis, Sporidesmium melaleucae (incl. Sporidesmiales ord. nov.) on Melaleuca sp., Teratosphaeria sieberi on Eucalyptus sieberi, Thecaphora aus-traliensis in capsules of a variant of Oxalis exilis. Brazil, Aspergillus serratalhadensis from soil, Diaporthe pseudo-inconspicua from Poincianella pyramidalis, Fomitiporella pertenuis on dead wood, Geastrum magnosporum on soil, Marquesius aquaticus (incl. Marquesius gen. nov.) from submerged decaying twig and leaves of unidentified plant, Mastigosporella pigmentata from leaves of Qualea parviflorae, Mucor souzae from soil, Mycocalia aquaphila on decaying wood from tidal detritus, Preussia citrullina as endophyte from leaves of Citrullus lanatus, Queiroziella brasiliensis (incl. Queiroziella gen. nov.) as epiphytic yeast on leaves of Portea leptantha, Quixadomyces cearen-sis (incl. Quixadomyces gen. nov.) on decaying bark, Xylophallus clavatus on rotten wood. Canada, Didymella cari on Carum carvi and Coriandrum sativum. Chile, Araucasphaeria foliorum (incl. Araucasphaeria gen. nov.) on Araucaria araucana, Aspergillus tumidus from soil, Lomentospora valparaisensis from soil. Colombia, Corynespora pseudocassiicola on Byrsonima sp., Eucalyptostroma eucalyptorum on Eucalyptus pellita, Neometulocladosporiella eucalypti (incl. Neometulocladosporiella gen. nov.) on Eucalyptus grandis × urophylla, Tracylla eucalypti (incl. Tracyllaceae fam. nov., Tracyllalales ord. nov.) on Eucalyptus urophylla. Cyprus, Gyromitra anthracobia (incl. Gyromitra subg. Pseudoverpa) on burned soil. Czech Republic, Lecanicillium restrictum from the surface of the wooden barrel, Lecanicillium testudineum from scales of Trachemys scripta elegans. Ecuador, Entoloma yanacolor and Saproamanita quitensis on soil. France, Lentithecium carbonneanum from submerged decorticated Populus branch. Hungary, Pleuromyces hungaricus (incl. Pleuromyces gen. nov.) from a large Fagus sylvatica log. Iran, Zymoseptoria crescenta on Aegilops triuncialis. Malaysia, Ochroconis musicola on Musa sp. Mexico, Cladosporium michoacanense from soil. New Zealand, Acrodontium metrosideri on Metrosideros excelsa, Polynema podocarpi on Podocarpus totara, Pseudoarthrographis phlogis (incl. Pseudoarthrographis gen. nov.) on Phlox subulata. Nigeria, Coprinopsis afrocinerea on soil. Pakistan, Russula mansehraensis on soil under Pinus roxburghii. Russia, Baoran­ gia alexandri on soil in deciduous forests with Quercus mongolica. South Africa, Didymocyrtis brachylaenae on Brachylaena discolor. Spain, Alfaria dactylis from fruit of Phoenix dactylifera, Dothiora infuscans from a blackened wall, Exophiala nidicola from the nest of an unidentified bird, Matsushimaea monilioides from soil, Terfezia morenoi on soil. United Arab Emirates, Tirmania honrubiae on soil. USA, Arxotrichum wyomingense (incl. Arxotrichum gen. nov.) from soil, Hongkongmyces snookiorum from submerged detritus from a fresh water fen, Leratiomyces tesquorum from soil, Talaromyces tabacinus on leaves of Nicotiana tabacum. Vietnam, Afroboletus vietnamensis on soil in an evergreen tropical forest, Colletotrichum condaoense from Ipomoea pes-caprae. Morphological and culture characteristics along with DNA barcodes are provided. © 2018 Naturalis Biodiversity Center & Westerdijk Fungal Biodiversity Institute

    First measurement of the Z→Ό+Ό−Z\rightarrow \mu^+ \mu^- angular coefficients in the forward region of pppp collisions at s=13\sqrt{s}=13 TeV

    No full text
    The first study of the angular distribution of ÎŒ+Ό−\mu^+ \mu^- pairs produced in the forward rapidity region via the Drell-Yan reaction pp→γ∗/Z+X→l+l−+Xpp \rightarrow \gamma^{*}/Z +X \rightarrow l^+ l^- + X is presented, using data collected with the LHCb detector at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 5.1 fb−1\rm{fb}^{-1}. The coefficients of the five leading terms in the angular distribution are determined as a function of the dimuon transverse momentum and rapidity. The results are compared to various theoretical predictions of the ZZ-boson production mechanism and can also be used to probe transverse-momentum-dependent parton distributions within the proton

    First measurement of the Z→Ό+Ό−Z\rightarrow \mu^+ \mu^- angular coefficients in the forward region of pppp collisions at s=13\sqrt{s}=13 TeV

    No full text
    The first study of the angular distribution of ÎŒ+Ό−\mu^+ \mu^- pairs produced in the forward rapidity region via the Drell-Yan reaction pp→γ∗/Z+X→l+l−+Xpp \rightarrow \gamma^{*}/Z +X \rightarrow l^+ l^- + X is presented, using data collected with the LHCb detector at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 5.1 fb−1\rm{fb}^{-1}. The coefficients of the five leading terms in the angular distribution are determined as a function of the dimuon transverse momentum and rapidity. The results are compared to various theoretical predictions of the ZZ-boson production mechanism and can also be used to probe transverse-momentum-dependent parton distributions within the proton

    Measurement of the charm mixing parameter yCP−yCPKπy_{CP} - y_{CP}^{K\pi} using two-body D0D^0 meson decays

    No full text
    A measurement of the ratios of the effective decay widths of D0→π−π+D^0 \to \pi^-\pi^+ and D0→K−K+D^0 \to K^-K^+ decays over that of D0→K−π+D^0 \to K^-\pi^+ decays is performed with the LHCb experiment using proton-proton collisions at a centre-of-mass energy of 13 TeV13 \, \mathrm{TeV}, corresponding to an integrated luminosity of 6 fb−16 \, \mathrm{fb^{-1}}. These observables give access to the charm mixing parameters yCPππ−yCPKπy_{CP}^{\pi\pi} - y_{CP}^{K\pi} and yCPKK−yCPKπy_{CP}^{KK} - y_{CP}^{K\pi}, and are measured as yCPππ−yCPKπ=(6.57±0.53±0.16)×10−3y_{CP}^{\pi\pi} - y_{CP}^{K\pi} = (6.57 \pm 0.53 \pm 0.16) \times 10^{-3}, yCPKK−yCPKπ=(7.08±0.30±0.14)×10−3y_{CP}^{KK} - y_{CP}^{K\pi} = (7.08 \pm 0.30 \pm 0.14) \times 10^{-3}, where the first uncertainties are statistical and the second systematic. The combination of the two measurements is yCP−yCPKπ=(6.96±0.26±0.13)×10−3y_{CP} - y_{CP}^{K\pi} = (6.96 \pm 0.26 \pm 0.13) \times 10^{-3}, which is four times more precise than the previous world average

    Measurement of the charm mixing parameter yCP−yCPKπy_{CP} - y_{CP}^{K\pi} using two-body D0D^0 meson decays

    No full text
    International audienceA measurement of the ratios of the effective decay widths of D0→π-π+ and D0→K-K+ decays over that of D0→K-π+ decays is performed with the LHCb experiment using proton–proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6  fb-1. These observables give access to the charm mixing parameters yCPππ-yCPKπ and yCPKK-yCPKπ, and are measured as yCPππ-yCPKπ=(6.57±0.53±0.16)×10-3, yCPKK-yCPKπ=(7.08±0.30±0.14)×10-3, where the first uncertainties are statistical and the second systematic. The combination of the two measurements is yCP-yCPKπ=(6.96±0.26±0.13)×10-3, which is four times more precise than the previous world average

    Search for the rare hadronic decay Bs0→ppˉB_s^0\to p \bar{p}

    No full text
    A search for the rare hadronic decay Bs0→ppÂŻ is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6  fb-1. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0→ppÂŻ)&lt;4.4(5.1)×10-9 at 90% (95%) confidence level; this is currently the world’s best upper limit. The decay mode B0→ppÂŻ is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0→ppÂŻ)=(1.27±0.15±0.05±0.04)×10-8, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0→K+π-. The combination of the two LHCb measurements of the B0→ppÂŻ branching fraction yields B(B0→ppÂŻ)=(1.27±0.13±0.05±0.03)×10-8.A search for the rare hadronic decay Bs0→ppˉB_s^0\to p \bar{p} is performed using proton-proton collision data recorded by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 6 fb−1^{-1}. No evidence of the decay is found and an upper limit on its branching fraction is set at B(Bs0→ppˉ)<4.4 (5.1)×10−9{\cal B}(B_s^0\to p \bar{p}) < 4.4~(5.1) \times 10^{-9} at 90% (95%) confidence level; this is currently the world's best upper limit. The decay mode B0→ppˉB^0\to p \bar{p} is measured with very large significance, confirming the first observation by the LHCb experiment in 2017. The branching fraction is determined to be B(B0→ppˉ)=(1.27±0.15±0.05±0.04)×10−8{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.15 \pm 0.05 \pm 0.04) \times 10^{-8}, where the first uncertainty is statistical, the second is systematic and the third is due to the external branching fraction of the normalization channel B0→K+π−B^0\to K^+\pi^-. The combination of the two LHCb measurements of the B0→ppˉB^0\to p \bar{p} branching fraction yields B(B0→ppˉ)=(1.27±0.13±0.05±0.03)×10−8{\cal B}(B^0\to p \bar{p}) = \rm (1.27 \pm 0.13 \pm 0.05 \pm 0.03) \times 10^{-8}

    First measurement of the Z→Ό+Ό−Z\rightarrow \mu^+ \mu^- angular coefficients in the forward region of pppp collisions at s=13\sqrt{s}=13 TeV

    No full text
    The first study of the angular distribution of ÎŒ+Ό−\mu^+ \mu^- pairs produced in the forward rapidity region via the Drell-Yan reaction pp→γ∗/Z+X→l+l−+Xpp \rightarrow \gamma^{*}/Z +X \rightarrow l^+ l^- + X is presented, using data collected with the LHCb detector at a centre-of-mass energy of 13TeV, corresponding to an integrated luminosity of 5.1 fb−1\rm{fb}^{-1}. The coefficients of the five leading terms in the angular distribution are determined as a function of the dimuon transverse momentum and rapidity. The results are compared to various theoretical predictions of the ZZ-boson production mechanism and can also be used to probe transverse-momentum-dependent parton distributions within the proton
    • 

    corecore