30 research outputs found

    SDHA gain-of-function engages inflammatory mitochondrial retrograde signaling via KEAP1-Nrf2.

    Get PDF
    Whether screening the metabolic activity of immune cells facilitates discovery of molecular pathology remains unknown. Here we prospectively screened the extracellular acidification rate as a measure of glycolysis and the oxygen consumption rate as a measure of mitochondrial respiration in B cells from patients with primary antibody deficiency. The highest oxygen consumption rate values were detected in three study participants with persistent polyclonal B cell lymphocytosis (PPBL). Exome sequencing identified germline mutations in SDHA, which encodes succinate dehydrogenase subunit A, in all three patients with PPBL. SDHA gain-of-function led to an accumulation of fumarate in PPBL B cells, which engaged the KEAP1-Nrf2 system to drive the transcription of genes encoding inflammatory cytokines. In a single patient trial, blocking the activity of the cytokine interleukin-6 in vivo prevented systemic inflammation and ameliorated clinical disease. Overall, our study has identified pathological mitochondrial retrograde signaling as a disease modifier in primary antibody deficiency

    Complement Regulates Nutrient Influx and Metabolic Reprogramming during Th1 Cell Responses.

    Get PDF
    Expansion and acquisition of Th1 cell effector function requires metabolic reprogramming; however, the signals instructing these adaptations remain poorly defined. Here we found that in activated human T cells, autocrine stimulation of the complement receptor CD46, and specifically its intracellular domain CYT-1, was required for induction of the amino acid (AA) transporter LAT1 and enhanced expression of the glucose transporter GLUT1. Furthermore, CD46 activation simultaneously drove expression of LAMTOR5, which mediated assembly of the AA-sensing Ragulator-Rag-mTORC1 complex and increased glycolysis and oxidative phosphorylation (OXPHOS), required for cytokine production. T cells from CD46-deficient patients, characterized by defective Th1 cell induction, failed to upregulate the molecular components of this metabolic program as well as glycolysis and OXPHOS, but IFN-Îł production could be reinstated by retrovirus-mediated CD46-CYT-1 expression. These data establish a critical link between the complement system and immunometabolic adaptations driving human CD4(+) T cell effector function

    Mitochondrial arginase-2 is essential for IL-10 metabolic reprogramming of inflammatory macrophages.

    Get PDF
    Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1ÎČ in vitro. Accordingly, HIF-1α and IL-1ÎČ are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell

    Glucocortiocoid Treatment of MCMV Infected Newborn Mice Attenuates CNS Inflammation and Limits Deficits in Cerebellar Development

    Get PDF
    Infection of the developing fetus with human cytomegalovirus (HCMV) is a major cause of central nervous system disease in infants and children; however, mechanism(s) of disease associated with this intrauterine infection remain poorly understood. Utilizing a mouse model of HCMV infection of the developing CNS, we have shown that peripheral inoculation of newborn mice with murine CMV (MCMV) results in CNS infection and developmental abnormalities that recapitulate key features of the human infection. In this model, animals exhibit decreased granule neuron precursor cell (GNPC) proliferation and altered morphogenesis of the cerebellar cortex. Deficits in cerebellar cortical development are symmetric and global even though infection of the CNS results in a non-necrotizing encephalitis characterized by widely scattered foci of virus-infected cells with mononuclear cell infiltrates. These findings suggested that inflammation induced by MCMV infection could underlie deficits in CNS development. We investigated the contribution of host inflammatory responses to abnormal cerebellar development by modulating inflammatory responses in infected mice with glucocorticoids. Treatment of infected animals with glucocorticoids decreased activation of CNS mononuclear cells and expression of inflammatory cytokines (TNF-α, IFN-ÎČ and IFNÎł) in the CNS while minimally impacting CNS virus replication. Glucocorticoid treatment also limited morphogenic abnormalities and normalized the expression of developmentally regulated genes within the cerebellum. Importantly, GNPC proliferation deficits were normalized in MCMV infected mice following glucocorticoid treatment. Our findings argue that host inflammatory responses to MCMV infection contribute to deficits in CNS development in MCMV infected mice and suggest that similar mechanisms of disease could be responsible for the abnormal CNS development in human infants infected in-utero with HCMV

    CD8 +

    No full text

    Infiltration of inflammatory cells and induction of proinflammatory cytokines in the brains of MCMV infected mice.

    No full text
    <p>A. Percentage of CD45<sup>hi/int</sup>, F4/80<sup>+</sup> mononuclear cells in the brain following infection with MCMV, PND8. Plots are representative of 1 of 4 replicates, n = 4 mice pooled/replicate. B. Expression of MHC Class II, gated on CD45<sup>hi/int</sup>, F4/80<sup>+</sup> population. Histogram is representative of 1 of 4 replicates, n = 4 mice pooled/replicate. C. Expression of Iba-1 (red), a marker for activated macrophages/microglia, and TOPROIII (blue), a nuclear marker, in the cerebellum of control and infected mice at PND8, 20×, scale bars = 50 ”m. The number of Iba-1<sup>+</sup> cells was quantified from 4 sections/animals, n = 8 mice/experimental group. Data are shown as mean +/− SEM. P values were calculated using a two-tailed T test. D. Inflammatory gene expression in the cerebellum of control and infected mice at PND8. Data are shown as mean +/− SEM. P values were calculated using a two-tailed T test, n = 5 mice/experimental group.</p

    Treatment with the glucocorticoid prednisolone normalizes granule neuron progenitor cell proliferation in MCMV infected mice.

    No full text
    <p>A. Representative images of brain sections depicting the expression of cell cycle markers in the EGL of control or infected mice treated with vehicle or pred; BrdU (green), Ki67 (red), TOPROIII (blue), 60×, scale bars = 20 ”m. B–C. Stereological quantification of BrdU<sup>+</sup> and Ki67<sup>+</sup> GNPCs in the EGL of vehicle or pred treated, control and infected mice. Data are shown as mean +/− SEM, 8 sections were counted per mouse, n = 5–6 mice/experimental group. P values calculated using two-way ANOVA. Vehicle treated control vs. MCMV were significantly different (p≀.001) as determined by two-tailed T test. D. (Top) Detection of phospho-cyclin B1 and cyclin B1 in the cerebellum by immunoblotting. Actin loading control shown at bottom. Each lane represents 2 cerebella pooled, n = 2 lanes/experimental group. (Bottom) Densitometry showing the expression of p-cyclin B1, relative to actin, in the cerebellum of vehicle or pred treated, control and infected animals. Data are representative of 3 replicate blots. P value calculated by two-way ANOVA. Control vs. MCMV were significantly different (p≀.02) as determine by two-tailed T test.</p
    corecore