55 research outputs found

    Inverse tone mapping

    Get PDF
    The introduction of High Dynamic Range Imaging in computer graphics has produced a novelty in Imaging that can be compared to the introduction of colour photography or even more. Light can now be captured, stored, processed, and finally visualised without losing information. Moreover, new applications that can exploit physical values of the light have been introduced such as re-lighting of synthetic/real objects, or enhanced visualisation of scenes. However, these new processing and visualisation techniques cannot be applied to movies and pictures that have been produced by photography and cinematography in more than one hundred years. This thesis introduces a general framework for expanding legacy content into High Dynamic Range content. The expansion is achieved avoiding artefacts, producing images suitable for visualisation and re-lighting of synthetic/real objects. Moreover, it is presented a methodology based on psychophysical experiments and computational metrics to measure performances of expansion algorithms. Finally, a compression scheme, inspired by the framework, for High Dynamic Range Textures, is proposed and evaluated

    Inverse tone mapping

    Get PDF
    The introduction of High Dynamic Range Imaging in computer graphics has produced a novelty in Imaging that can be compared to the introduction of colour photography or even more. Light can now be captured, stored, processed, and finally visualised without losing information. Moreover, new applications that can exploit physical values of the light have been introduced such as re-lighting of synthetic/real objects, or enhanced visualisation of scenes. However, these new processing and visualisation techniques cannot be applied to movies and pictures that have been produced by photography and cinematography in more than one hundred years. This thesis introduces a general framework for expanding legacy content into High Dynamic Range content. The expansion is achieved avoiding artefacts, producing images suitable for visualisation and re-lighting of synthetic/real objects. Moreover, it is presented a methodology based on psychophysical experiments and computational metrics to measure performances of expansion algorithms. Finally, a compression scheme, inspired by the framework, for High Dynamic Range Textures, is proposed and evaluated.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC) (EP/D032148)GBUnited Kingdo

    Perceptual Quality Assessment of NeRF and Neural View Synthesis Methods for Front-Facing Views

    Full text link
    Neural view synthesis (NVS) is one of the most successful techniques for synthesizing free viewpoint videos, capable of achieving high fidelity from only a sparse set of captured images. This success has led to many variants of the techniques, each evaluated on a set of test views typically using image quality metrics such as PSNR, SSIM, or LPIPS. There has been a lack of research on how NVS methods perform with respect to perceived video quality. We present the first study on perceptual evaluation of NVS and NeRF variants. For this study, we collected two datasets of scenes captured in a controlled lab environment as well as in-the-wild. In contrast to existing datasets, these scenes come with reference video sequences, allowing us to test for temporal artifacts and subtle distortions that are easily overlooked when viewing only static images. We measured the quality of videos synthesized by several NVS methods in a well-controlled perceptual quality assessment experiment as well as with many existing state-of-the-art image/video quality metrics. We present a detailed analysis of the results and recommendations for dataset and metric selection for NVS evaluation

    Mixing tone mapping operators on the GPU by differential zone mapping based on psychophysical experiments

    Get PDF
    © 2016 In this paper, we present a new technique for displaying High Dynamic Range (HDR) images on Low Dynamic Range (LDR) displays in an efficient way on the GPU. The described process has three stages. First, the input image is segmented into luminance zones. Second, the tone mapping operator (TMO) that performs better in each zone is automatically selected. Finally, the resulting tone mapping (TM) outputs for each zone are merged, generating the final LDR output image. To establish the TMO that performs better in each luminance zone we conducted a preliminary psychophysical experiment using a set of HDR images and six different TMOs. We validated our composite technique on several (new) HDR images and conducted a further psychophysical experiment, using an HDR display as the reference that establishes the advantages of our hybrid three-stage approach over a traditional individual TMO. Finally, we present a GPU version, which is perceptually equal to the standard version but with much improved computational performance

    Self-supervised high dynamic range imaging : what can be learned from a single 8-bit video?

    Get PDF
    Recently, Deep Learning-based methods for inverse tone mapping standard dynamic range (SDR) images to obtain high dynamic range (HDR) images have become very popular. These methods manage to fill over-exposed areas convincingly both in terms of details and dynamic range. To be effective, deep learning-based methods need to learn from large datasets and transfer this knowledge to the network weights. In this work, we tackle this problem from a completely different perspective. What can we learn from a single SDR 8-bit video? With the presented self-supervised approach, we show that, in many cases, a single SDR video is sufficient to generate an HDR video of the same quality or better than other state-of-the-art methods

    Quantum computing algorithms: getting closer to critical problems in computational biology

    Get PDF
    The recent biotechnological progress has allowed life scientists and physicians to access an unprecedented, massive amount of data at all levels (molecular, supramolecular, cellular and so on) of biological complexity. So far, mostly classical computational efforts have been dedicated to the simulation, prediction or de novo design of biomolecules, in order to improve the understanding of their function or to develop novel therapeutics. At a higher level of complexity, the progress of omics disciplines (genomics, transcriptomics, proteomics and metabolomics) has prompted researchers to develop informatics means to describe and annotate new biomolecules identified with a resolution down to the single cell, but also with a high-throughput speed. Machine learning approaches have been implemented to both the modelling studies and the handling of biomedical data. Quantum computing (QC) approaches hold the promise to resolve, speed up or refine the analysis of a wide range of these computational problems. Here, we review and comment on recently developed QC algorithms for biocomputing, with a particular focus on multi-scale modelling and genomic analyses. Indeed, differently from other computational approaches such as protein structure prediction, these problems have been shown to be adequately mapped onto quantum architectures, the main limit for their immediate use being the number of qubits and decoherence effects in the available quantum machines. Possible advantages over the classical counterparts are highlighted, along with a description of some hybrid classical/quantum approaches, which could be the closest to be realistically applied in biocomputation

    Developing the ArchAIDE Application: A digital workflow for identifying, organising and sharing archaeological pottery using automated image recognition

    Full text link
    Pottery is of fundamental importance for understanding archaeological contexts, facilitating the understanding of production, trade flows, and social interactions. Pottery characterisation and the classification of ceramics is still a manual process, reliant on analogue catalogues created by specialists, held in archives and libraries. The ArchAIDE project worked to streamline, optimise and economise the mundane aspects of these processes, using the latest automatic image recognition technology, while retaining key decision points necessary to create trusted results. Specifically, ArchAIDE worked to support classification and interpretation work (during both fieldwork and post-excavation analysis) with an innovative app for tablets and smartphones. This article summarises the work of this three-year project, funded by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement N.693548, with a consortium of partners representing both the academic and industry-led ICT (Information and Communications Technology) domains, and the academic and development-led archaeology domains. The collaborative work of the archaeological and technical partners created a pipeline where potsherds are photographed, their characteristics compared against a trained neural network, and the results returned with suggested matches from a comparative collection with typical pottery types and characteristics. Once the correct type is identified, all relevant information for that type is linked to the new sherd and stored within a database that can be shared online. ArchAIDE integrated a variety of novel and best-practice approaches, both in the creation of the app, and the communication of the project to a range of stakeholders

    Advanced High Dynamic Range Imaging: Theory and Practice

    No full text
    Imaging techniques seek to simulate the array of light that reaches our eyes to provide the illusion of sensing scenes directly. Both photography and computer graphics deal with the generation of images. Both disciplines have to cope with the high dynamic range in the energy of visible light that human eyes can sense. Traditionally photography and computer graphics took different approaches to the high dynamic range problem. Work over the last ten years though has unified these disciplines and created powerful new tools for the creation of complex, compelling and realistic images. This book p

    PubblicitĂ  comportamentale, GDPR e rischi di discriminazione

    No full text
    Premessa In una economia sempre più dato-centrica è ormai difficile immaginare una pubblicità non collegata a interessi personali, consumi e tracce lasciate nel web. Si tratta della cd. pubblicità comportamentale ed è un fenomeno di rilevanza centrale, atteso che l’ecosistema di internet si regge ormai in gran parte sugli introiti pubblicitari. Conseguentemente, la possibilità di utilizzare i dati degli utenti per massimizzare i ricavi, attraverso l’offerta di annunci pubblicitari in grado di..

    A Fast Implementation of the Octagon Abstract Domain on Graphics Hardware

    No full text
    • …
    corecore