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Fig. 1. An example of our inverse tone mapping operator applied to an SDR version frame from the Carousel fireworks 02 sequence [13]. Our method can
recover missing texture, colors, and dynamic range details in a convincing way.

Recently, Deep Learning-based methods for inverse tone mapping standard
dynamic range (SDR) images to obtain high dynamic range (HDR) images
have become very popular. These methods manage to fill over-exposed areas
convincingly both in terms of details and dynamic range. To be effective,
deep learning-based methods need to learn from large datasets and transfer
this knowledge to the network weights. In this work, we tackle this problem
from a completely different perspective. What can we learn from a single
SDR 8-bit video? With the presented self-supervised approach, we show
that, in many cases, a single SDR video is sufficient to generate an HDR
video of the same quality or better than other state-of-the-art methods.
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1 INTRODUCTION
To capture the full range of color and shades of brightness in the
real world, high dynamic range (HDR) imaging is employed; typ-
ically capturing multiple photographs [11, 31] of the same scene
at different exposure times. Even though modern sensors setup
[8, 24, 25], cameras with smart optics [44, 55], and smartphones [20]
can capture HDR imagery, a large amount of content was and still
is captured in standard dynamic range (SDR) or is converted to SDR
after capture; i.e., smartphones.

When presenting this content on HDR displays [52], or using this
imagery for applications where HDR values are required [10], SDR
values need to be boosted to HDR; a process known as Inverse Tone
Mapping [6].

Researchers have proposed a wide variety of approaches to solv-
ing this problem, from straightforward linear functions [1] to, more
recently, deep-learning (DL) based solutions [15, 17]. Typically, these
DL approaches outperform the existing methods and are mostly
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based on training a convolutional neural network (CNN) to encode a
mapping from SDR to HDR. To achieve this, a large set of SDR/tone
mapped and reference HDR image pairs is required to train a general
mapping.
We propose a fundamentally different approach based on the

observation that much of the information required for inverse tone
mapping may be present in an SDR video sequence. This can be a
result of a variety of effects that are present in videos but not in still
images. For example, motion in the scene or from the camera can
uncover detail that was badly exposed in earlier frames. In addition,
changes in the lighting of the scene, or luminance variations due
to automatic exposures from the camera can also create a similar
effect, where information otherwise lost in some frames exists in
some others.
Our approach attempts to gather and distill this information

present in a single SDR video to recover information in over-exposed
and under-exposed areas of the same video. Figure 1 shows the
results of our method. We define a new pipeline for expanding the
dynamic range of SDR content using deep-learning approaches. This
optimization relies only on the frames of the input SDR video; which
are processed in a self-supervised fashion. In the presence of only a
single SDR video, there is no ground truth HDR data for training; the
method uncovers HDR patterns embedded in the underlying SDR
signal using self-supervision. The neural network weights that hold
all the knowledge for inverse tone mapping are uniquely learned
for each video without relying on external datasets of HDR images
or other videos, which are still limited in quantity [51].

In summary, we propose a novel inverse tone mapping operator
(ITMO) for expanding SDR videos that self-learns from an input
video in a self-supervised fashion. Our approach, even though self-
supervised, broadly outperforms state-of-the-art fully supervised
ITMO methods both visually and across several metrics. Our main
contributions are:

• An self-supervised, straightforward, and effective architec-
ture for expanding SDR videos to obtain HDR videos without
the need for a comprehensive dataset.

• A method for generating a tailored dataset starting from a
single SDR video;

The source code of this work is available online1.

2 RELATED WORK
ITMOs generate an HDR image/video from an original SDR version
that is quantized at 8-bits [6]. This problem is ill-posed because there
is not much information left in under-exposed and over-exposed
areas.

2.1 Classic Methods
ITMOs, not employing deep learning, can be classified into three
main classes: global, local, and user-based. On one hand, global
ITMOs define an expansion function that gathers global statistics
from the image and applies it to all pixels. These ITMOs can use lin-
ear functions [1], multi-linear functions [45] and gamma functions
[7, 30, 42, 43]. On the other hand, local ITMOs define an expansion
function that varies per pixel locally exploiting both local and global
1https://github.com/banterle/Zeroshot-HDRV

statistics from the image. Several strategies have been proposed.
For example, some operators generate an expand map (a spatially
varying function) for guiding the expansion only in certain area
of high luminance [6, 21, 29, 49]. In user-based methods, the user
drives the expansion and details recovery. For example, Wang et al.
[59] proposed a solution in which a user recovers the dynamic range
and details of an SDR image using clone-tools and inpainting tech-
niques similar to modern image editors. Another example of such
methods is Didyk et al.’s work [13]. In this work, a semi-automatic
classification interface allows users to classify pixels into an area
consisting of diffuse parts, reflections, and light sources. Then, only
reflections and light sources are expanded by applying an adaptive
non-linear function.

2.2 Deep Learning-based Methods
Recently, several ITMOs have been proposed using different DL ar-
chitectures. DL-based methods have largely taken two approaches.
The first is to directly reconstruct an HDR image from SDR and the
second predicts a set of SDR exposures that are fused to generate
an HDR image [12]. Eilertsen et al. [15] masked out well-exposed
regions which were reconstructed by a linear operator, and over-
exposed regions which were reconstructed by a UNet. Eilerstein et
al. [16] extended this work for temporal stability via training regu-
larization. Yu et al. [62] improved Eilertsen et al.’s network [15] by
adding an attentive module and using residual blocks in the encoder,
they also proposed a novel calibration of HDR images and showed
how to extend expansion to environment maps for high-quality
image-based lighting. Marnerides et al. [41] used a multi-branch
network to directly reconstruct the HDR image where each branch
was designed to capture different features for reconstruction. Ap-
proaches have also been proposed to reverse the camera pipeline
to synthesize HDR images, for example, Yang et al. [61] also used
a UNet and Liu et al. [37] reconstruct images using a series of net-
works. Santos et al. [51] proposed an ITMO based on pretraining a
network for inpainting and then specializing this network for ITMO
based on masking.
Endo et al. [17] was the first work to predict a set of exposures

via an autoencoder that fuses them to generate an HDR image. This
approach has been improved using a GAN architecture [33], general-
ized to create an arbitrary number of different exposure images [34]
with cycle consistency, and finally further generalized to arbitrarily
change the exposure of the input image by a given target exposure
value [23]. The creation of multiple exposures is similar to our work,
except their method relied on a large set of training images to learn
the mapping from SDR to HDR. Recently, Zhang et al.[63] showed
that processing high-frequency and low-frequency parts of an im-
age separately can improve the reconstruction process. The NTIRE
2021 Challenge on High Dynamic Range Imaging [48] presented
several supervised HDR reconstruction methods which proposed a
range of network architectures and datasets for the evaluation of
static images, although these methods are not compared with the
state-of-the-art.
In terms of video, Kim et al. [26] proposed a super-resolution

and inverse tone mapping approach designed for video applications
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that directly produced HDR frames. They reconstruct low and high-
frequency information separately and include upscaling of the high-
frequency information, which are then combined into the final frame.
They further improved their approach by using a GAN architecture
[27]. In both works, dynamic range expansion and super-resolution
are computed per framewithout an explicit mechanism for enforcing
temporal coherence and avoiding temporal artifacts. Recently, Chen
et al. [9] introduced three cascade networks for global, local, and
highlight enhancement of SDR frames for HDR TV; the method is
trained on HDR10 videos. However, the training and the network
do not have a mechanism to model temporal data.

Contemporary work [58] focuses on static SDR images. An unsu-
pervised GAN scheme was introduced that used a large dataset of
SDR images (approximately 25,000 unique images) during training
time to expand the dynamic range of images.
The majority of these approaches are based on the same under-

lying concept of applying transformations to a ground truth set
of HDR images to synthesize an SDR dataset, and then learning
the mapping from SDR to HDR or a set of exposures. Unlike other
methods, ours uses a zero-shot unsupervised approach that does
not require previous data. Furthermore, we focus on video; there
are no approaches that harness the information of SDR videos. In
this work, we provide a general approach for inverse tone mapping
of SDR videos, overcoming the limitations of video methods that
cannot be specialized to a particular type of content and require
significant dataset sizes and training to learn the mapping.

2.3 Self-supervised Methods for Imaging
Recently, self-supervisedmethods have becomemore popular thanks
to their performance and the use of limited or no datasets. Shocher
et al. [54] introduced zero-shot methods for inverse imaging prob-
lems and showed that such strategies can be effective and produce
convincing results. The key observation is that the image has rep-
etitions of details at different scales that can be exploited. With a
similar aim but a different methodology, Ulyanov et al. [56] pro-
posed the Deep Image Priors framework, where imaging problems
such as denoising, inpainting, super-resolution, deblocking, etc. are
solved by optimizing the network parameters exploiting a prior
degradation function, ℎ, that is known. In this case, no dataset is
generated butℎ (e.g., downsampling operator, blocking method, etc.)
has to be defined for each problem.

3 SELF-SUPERVISED EXPANSION
The core concept behind this work is based on the observation that
parts of the scene when capturing SDR videos frequently change
in their exposedness from frame-to-frame. This may be the conse-
quence of a person/object moving from light to shadow and vice-
versa, or the varying exposure time of the shutter speed. This means
that information about multiple exposures which can be used for
inverse tone mapping is already present in many videos. This indi-
cates that training an ITMO on large datasets, as all deep learning
approaches currently do, is not always required.
This motivates the design of an approach that can leverage this

information for tone mapping. While a patch-based [57] or optical
flow [8] method could be used to find the same region of an image
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Fig. 2. The full pipeline of our system. To expand the dynamic range of an
SDR video, we first generate a tailored dataset, which is employed to train
a CNN. Secondly, the trained network predicts higher and lower exposures
of the current frame. Finally, these exposures are merged into HDR frames.
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Fig. 3. An example showing how the training data is generated from a
single video. Each SDR frame is exposed to a higher exposure. The higher
exposures are then used as inputs during training to learn the multiplicative
residual mapping N, using the starting SDR frames as targets.

in different frames with different exposures, we instead use an
approach based on deep learning. This is motivated by the success
of deep learning for inverse tone mapping (e.g. [15, 41, 51]) and
the use of zero-shot methods with deep learning for single image
operations, for example, the super-resolution approach by Shocher
et al. [54] based on a similar analysis of similar content in static
images [64].

3.1 Overview
Our goal is to predict an HDR video starting from a single input
SDR video,𝑉 ; Figure 2 shows the full pipeline of our work. As a first
step, we generate a tailored dataset, D𝑉 , using only 𝑉 , as shown in
Figure 3, and not any other HDR content (Sec.3.2). We then train a
network (Sec.3.3), N , that predicts spatially-varying multiplicative
residuals, 𝛿 , such that the lower exposure prediction frame, 𝐼𝑏 , has
an 𝑒-stop difference from the input, 𝐼ℎ , see Figure 5. The reason why
ourN predicts such differences; i.e. 𝛿 , is in this way the task is more
focused only on the missing parts; we show the effectiveness of this
approach in Section 4.5. Finally, we employN to predict higher and
lower exposures; i.e., Figure 7, and we merge them [12] (Sec.3.5).
To summarise, for each original frame at base exposure 𝐼𝑏 , we

generate a higher exposure frame 𝐼ℎ , that is used as input to the
network, N , during training. The network target, 𝛿 , is the multi-
plicative residual of 𝐼ℎ and 𝐼𝑏 . During training, the network learns
to generate the residual that connects two adjacent exposures via

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: May 2024.
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Fig. 4. Examples of input residuals vs. predicted residuals from our network. At training time (red border), an input frame 𝐼𝑏 is re-exposed to create 𝐼ℎ . The
network learns the ratio 𝛿 = [𝐼𝑏/𝐼ℎ ]10, where its input is 𝐼ℎ . At inference time (green border), in order to expand the dynamic range of 𝐼𝑏 , we apply the network
to 𝐼𝑏 instead; obtaining a predicted residual, N(𝐼𝑏 ) . Note that the predicted residual learns information in the badly exposed regions of the input 𝐼ℎ . For
example, it fills in details of the over-exposed sky that are lost in the bottom row.

multiplication or division. At inference, the predicted residual is
generated using 𝐼𝑏 as input instead, allowing us to generate higher
exposures, 𝐼ℎ , and lower exposures, 𝐼𝑙 , by respectively dividing and
multiplying 𝐼𝑏 with the predicted residual 𝛿 = N(𝐼𝑏 ); see Figure 4.
The residual contains information from the whole video as the net-
work is trained on frames across the sequence. This means that
temporal information propagation happens via the learned features
in the network weights that get information from multiple frames
from different times in the same video but also via the temporal
consistency loss at each training iteration that takes into account
temporally neighboring frames.
The main intuition is we train a network using as input over-

exposed SDR frames to learn the mapping from overexposed to
well-exposed. Depending on the video lighting variations (e.g., mo-
tion, exposure time, etc.), this mapping may be fully learned by

the network. Therefore, at inference time, we can use the original
frames of the video and apply the learned mapping to extend the
dynamic range of our video.
Note that apart from the single video that is to be expanded, no

further data needs to be used for training, making the method
self-supervised. The method uses self-supervision from the SDR
video as there is no ground truth HDR target. In the absence of a
supervisory HDR signal for training, a tailored training dataset is
generated from the SDR video that is to be expanded.

3.2 Tailored Dataset Generation
The training dataset is formed by extracting a higher exposure, 𝐼ℎ ,
from each SDR frame, 𝐼𝑏 , of the video at a base exposure value 𝑏. To
re-expose 𝐼𝑏 into 𝐼ℎ , we use the following exposure function:

𝐼Δ𝑣 =
[
(𝑔−1

(
𝑔(𝐼 ) · 2Δ𝑣

) ]1
0 =

[ (
𝐼 · 𝑔−1 (2Δ𝑣)

) ]1
0 , (1)
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where 𝑔 is the inverse camera response function, 𝐼Δ𝑣 is the re-
exposed frame 𝐼 , Δ𝑣 is the change in exposure value in f-stops, and
[·]10 is an 8-bit rounding operator with clipping in the range [0, 1].
In case the camera response function is unavailable, this can be
computed using single image methods [35, 36, 53]. Recently, smart-
phones and DSLRs encode videos using standard transfer functions
such as PQ and HLG [22].
Then, 𝐼ℎ is used to compute the multiplicative residual as:

𝛿 =

[
𝐼𝑏

𝐼ℎ

]1
0
. (2)

Note that 𝐼ℎ > 𝐼𝑏 , therefore 𝛿 ∈ [0, 1]. At evaluation time, N will
instead take the original SDR frame as input, predicting 𝛿 to compute
higher and lower exposures:
Starting from an SDR input video, 𝑉 , we assume that it is the

result of exposing the ground truth HDR scene, at a base exposure
value 𝑏. To create a training-time input for N , we re-expose (see
Eq.1) the frames 𝐼𝑏 to a higher exposure value ℎ = 𝑏 + 𝑒 forming a
high exposure dataset, D𝑉 = {𝐼ℎ, 𝐼𝑏 }, as illustrated in Figure 3. The
residual 𝛿 (see Eq. 2) will be the target for the residual-predicting
network, N , during training. At the inference stage, exposure 𝐼𝑏
will be the input of N to generate higher and lower exposures (see
Figure 4):

𝐼𝑙 =

[
𝐼𝑏 · N (𝐼𝑏 )

]1
0

𝐼ℎ =

[
𝐼𝑏

N(𝐼𝑏 )

]1
0
. (3)

The value of the exposure difference, 𝑒 , is set to +2 stops; we found
this value to be the largest value we could use without leading
to too large over-exposed areas in the re-exposed input frame. To
ensure model robustness with respect to luminance and exposure
variations, we employ a data augmentation technique, where both
the starting exposure, 𝐼𝑏 , and the higher exposure, 𝐼ℎ , are shifted by
a small amount 𝑠 ∼ U(0, 0.25). This is a standard practice in inverse
tone mapping [15, 41, 62] in order to have robust augmentations. In
our case, the range of variations is relatively small because the input
frames at training time have already been re-exposed by +2-stops.
From our experimentation, a larger range than (0, 0.25) may reduce
the number of well-exposed pixels such that they would not be
sufficient to properly learn the mapping.

3.2.1 Sampling Frames. As the information content between sub-
sequent frames of a video is likely to be very similar, subsampling
of frames can be used to speed up training [15]. We propose an
approach that views the information content of the frames as a
distribution and then samples from this distribution. In this work,
we propose two approaches to achieve this.

The first is the use of regular sampling at a rate that is designed
to be a common divisor of commonly used frame rates. In this work,
we propose a regular subsampling at a rate of 6 (referred to as S6)
which is the largest common divisor between the traditional frame
rates of 24 and 30 as these are two of the most common frame rates
for videos.

The second strategy is to sample a subset of frames proportional to
the number of well-exposed pixels in each frame. This is motivated
by the observation that the network requires well-exposed pixels
to train the network, which can be found via sequential regular

sampling, or equivalently the same information can be found by
sampling a much smaller subset of frames that broadly contain the
same information. We exploit this latter point by creating a discrete
distribution 𝐻𝑤𝑒 of frames, where each bin of the distribution is
proportional to the percentage of well-exposed pixels in the frame,
then sampling a number of frames from this distribution. For each
frame, we compute the number of well-exposed pixels as

𝐹 (𝑡) =
∑︁

𝑝∈𝑝𝑖𝑥𝑒𝑙𝑠
1
𝑡 (𝑝), (4)

where the indicator function 1𝑡 (𝑝) = 1 if the 𝑝-th pixel is in the
range [0.05, 0.95] and is 0 otherwise; and the sum is over all pixels
in the 𝑡-th frame in a sequence. The probability of sampling the 𝑡-th
frame of 𝐻𝑤𝑒 is computed as

𝐻𝑤𝑒 [𝑡] =
𝐹 (𝑡)∑

𝑠∈𝑓 𝑟𝑎𝑚𝑒𝑠 𝐹 (𝑠)
, (5)

where 𝑓 𝑟𝑎𝑚𝑒𝑠 is the length of the sequence. We use 𝑛𝑠 = 128 frames
sampled from𝐻𝑤𝑒 , this number being selected in early experiments,
which we found balances training time and error, although our
method is relatively robust to this value. We refer to this method as
SU in this paper. We compare the S6 and SU strategies in an ablation
study; see Section 4.5.

3.3 Loss Function
The loss function, L, used for optimizing the model (see Figure 5),
consists of three terms. The first term, L𝛿 , is the loss responsible
for directly optimizing the residual mapping and the second, L𝐼 ,
is responsible for the overall image mapping consistency, and L𝜏

maintains the temporal coherency at current frame 𝑡 :

L =(1 − 𝛼)
(
L𝛿

(
𝛿𝑡 , 𝛿𝑡

)
+ L𝐼

(
𝐼𝑡
𝑏
, 𝐼𝑡
𝑏

))
+

𝛼L𝜏

(
𝐼𝑡
𝑏
, 𝐼𝑡
𝑏
, 𝐼𝑡+1
𝑏

, 𝐼𝑡+1
𝑏

)
,

(6)

where 𝛿𝑡 = N(𝐼𝑡
ℎ
) is the residual prediction, 𝐼𝑡

𝑏
= 𝛿𝐼𝑡

ℎ
is the resulting

base exposure prediction from the higher exposure frames 𝐼𝑡
ℎ
in the

dataset, and 𝛼 is a weight between the static and temporal losses
(in our pilot experiments 𝛼 = 0.95 gave satisfactory results).

The residual loss, L𝛿 , is the 𝐿2 loss because we want to penalize
large changes in predicting the multiplicative residuals. The image
space loss L𝐼 , consists of an 𝐿1 distance term and a cosine similarity
term that helps enforce color consistency:

L𝐼 =
1
𝑁

𝑁∑︁
𝑗=1

∥𝐼𝑡, 𝑗𝑥 − 𝐼
𝑡, 𝑗
𝑦 ∥1 + _

(
1 − 1

𝑁

𝑁∑︁
𝑗=1

𝐼
𝑡, 𝑗
𝑥 · 𝐼𝑡, 𝑗𝑦

∥𝐼𝑡, 𝑗𝑥 ∥2∥𝐼𝑡, 𝑗𝑦 ∥2

)
(7)

where𝑁 is the total number of pixels of the image, 𝐼 𝑗 is the 𝑗-th RGB
pixel vector of image 𝐼 , and _ is a constant factor that adjusts the
contribution of the cosine similarity term (in our pilot experiments
_ = 5 gave satisfactory results).

The temporal loss L𝜏 ensures temporal coherency by minimizing
the temporal differences (i.e., current and next frame) between the
target and the estimated frames as:

L𝜏 = 𝐿2

(
𝐼𝑡+1
𝑏

− 𝐼𝑡
𝑏
, 𝐼𝑡+1
𝑏

− 𝐼𝑡
𝑏

)
, (8)
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TRAINING THE NETWORK
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Fig. 5. Tailored training using the generated dataset from the input SDR video. Our goal is to train our network to predict 𝛿 values by minimizing a loss, L,
composed of three terms. The first term, L𝛿 , is the loss responsible for directly optimizing the residual mapping. The second term, L𝐼 , is responsible for the
overall image mapping consistency. Finally, L𝜏 maintains the temporal coherency at the current frame 𝑡 .

r

Fig. 6. Diagram of the network architecture used by N. Conv(𝑘 ,𝑝) is a 2D
convolutional layer with kernel size 𝑘 and padding 𝑝 . BU denotes bilinear
upsampling by a factor of 2.

we employ 𝐿2 loss because we want to penalize large temporal
changes that may introduce temporal artifacts.

3.4 Model
Our model, N , has the goal of predicting 𝛿 . N is based on the
UNet architecture [50] and consists of an encoder and a decoder
part with skip-connections and 9 convolutional layers in total, see
Figure 6. The standard ReLU activation is used but the use of batch
normalization (BN) is avoided. This is because the BN layers were
found to cause blob-like artifacts in our initial experiments, likely
due to the change in input statistics when running at inference mode
using a different exposure value as input. Fixed-Pooling [32], which
is a learnable combination of max-pooling and average pooling, is
used for downsampling in the encoder, while bilinear upsampling is
used in the encoder. Figure 6 shows a diagram of the architecture.

To generate a frame at higher exposure, the input frame is divided
by the residual (see Figure 7):

𝐼ℎ = 𝐼𝑏+𝑒 =

[
𝐼𝑏

N(𝐼𝑏 )

]1
0
. (9)

MULTIPLE EXPOSURE GENERATION

NETWORK 
𝒩

𝒩(Ib)

[ ⋅ ]1
0

[ ⋅ ]1
0

Ib

̂Ih

̂Il

Fig. 7. The generation of exposures step in which the network predicts the
residual for an input frame 𝐼𝑏 . Then, an underexposed/overexposed frame is
created by multiplying/dividing the input frame 𝐼𝑏 by the residual, N(𝐼𝑏 ) .

Note that we apply clamping and rounding because we are inter-
ested in generating exposures in the SDR domain; such that the
method produces only valid values in [0,1]. This process can be re-
peated on the generated frames. For example, if we want to generate
a -4 stops exposure with 𝑒 = 2, we need first to compute a -2 stops
exposure:

𝐼𝑏−2 =
[
𝐼𝑏 · N (𝐼𝑏 )

]1
0
, (10)

and then to compute our goal exposure as :

𝐼𝑏−4 =
[
𝐼𝑏−2 · N (𝐼𝑏−2)

]1
0
. (11)

3.5 Generating and Merging Exposures
Once the network, N , is trained, we generate new exposure images
as:

𝐼𝑖 =

[
𝐼𝑖−sgn(𝑖)

(
N(𝐼𝑖−sgn(𝑖) )

)−sgn(𝑖) ]1
0

where 𝐼0 = 𝐼𝑏 . (12)

where 𝐼𝑏 is the input frame, and sgn is a sign function.
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Finally, the radiance map is computed in the logarithm domain
using a weighting function as proposed by Debevec and Malik [11]:

log𝐸 =

∑
𝑖 𝑤 (𝐼𝑖 ) ·

(
log(𝑔(𝐼𝑖 ) − log 𝑡𝑖

)∑
𝑖 𝑤 (𝐼𝑖 )

, (13)

where 𝑔 is the inverse camera response function,𝑤 (𝑥) = 1 − (2𝑥 −
1)12 is the hat weighting function for reducing reducing noise [2],
and 𝑡𝑖 = 2𝑖𝑒 is the exposure time.

The computation of longer exposure is important in Equation 13
because it helps in improving the overall image quality in certain
circumstances. For example, Figure 8 clearly shows our method
avoids desaturation. In another example, Figure 9 also demonstrates
how longer exposures help with masking noise.

(a) (b) (c)

Fig. 8. An example of our method for dark areas for the Bistro_03 sequence:
(a) The original SDR frame. (b) The frame in (a) re-exposed using a simple
multiplication. (c) +4-stop exposure generated using our method starting
from (a). Notice that colors are more desaturated in (b) than (c).

(a) (b) (c)

Fig. 9. An example of our method masking noise for the Fireplace_02 se-
quence: (a) The original SDR frame. (b) The frame in (a) re-exposed using
a simple multiplication. (c) +4-stop exposure generated using our method
starting from (a). Notice that noise is masked by using our method.

4 RESULTS
In this section, we present quantitative and qualitative results against
fully supervised state-of-the-art methods: Santos et al.[51], Eilertsen
et al.[15] using retrained parameters for temporal coherency[16],
Endo et al. [17], Marnerides et al.[41], Liu et al. [38], Lee et al. [33],
and Yu et al. [62], and Chen et al. [9]. The methods will be referred
to as SAN (Santos et al.), EIL ( Eilerstein et al.), EXP (Marnerides et
al.), DRT (Endo et al.), LIU (Liu et al.), DH (Lee et al.), JOU (Chen et
al.), LaNet (Yu et al.), and OUR (the presented method). We do not
compare with any zero-shot, self-supervised, or semi-supervised

methods, as to the best of our knowledge, none exist for inverse
tone mapping. Note that we used the original authors’ source code
and weights for all these methods.
For evaluation, we gathered 43 HDR videos from two popular

HDR video datasets: the Stuttgart HDR Video dataset (STU) [18]
and the UBC DML-HDR dataset (UBC) [4, 5]. It is important to note
that frames from these HDR videos were part of the training set of
the state-of-the-art methods we compared against; but due to the
scarcity of true HDR videos, not many datasets are available and
the community will, commonly, use similar datasets. This is largely
unavoidable and may have a detrimental effect on the results of our
method in the comparisons. To demonstrate our method in fairer
conditions, we employed a set of 4 HDR videos from the IC-1005
project (COST)2, which are available by request and, to the best
of our knowledge, have not been used in training of any of the
compared state-of-the-art methods.

4.1 Training: Video Generation
For our method, the training for each video was performed indepen-
dently, on an NVIDIA DGX Server 5.2.0 machine equipped with four
AMD Epyc 7742 (64-core) CPUs i7-7800X (3.50 GHz) with 1 TB of
memory and a single NVIDIA DGX A100 GPU with 40 GB of mem-
ory (CUDA 11.3). We implemented our model using the PyTorch
1.9.0 deep-learning framework.

To train our network, we employedmini-batch stochastic gradient
descent and the Adam update rule [28] with the learning rate set to
10−4. We left the rest of the parameters set to their default values;
i.e., 𝛽1 = 0.9, 𝛽2 = 0.999, and 𝜖 = 10−8. For each of our trained
videos, we set the maximum number of epochs to 128. Typically,
we reached a plateau of our loss around epoch 64-100. We trained
using a batch size of 4. All the videos are of resolution 512 × 512
both at training and evaluation time. The duration of the training is
constant for the SU method independently of the duration of the
video because it extracts 128 samples; where an epoch requires on
average 7.460 seconds to be completed on our machine. Note that
the required time for completing an epoch has a linear relationship
with 𝑛𝑠 .

In terms of prediction time (the time required for expanding an
SDR frame), the model maintains the linear complexity of UNets (i.e.,
linearly proportional to the number of input pixels). To generate
four images at higher and lower f-stop (i.e. -4 stops, -2 stops, +2
stops, and +4 stops) from the input frames at HD resolution (i.e.,
1920 × 1080) the model requires 6.74 milliseconds of computation.

To highlight that our method expands the dynamic range of
input videos, we plot the luminance histogram of our model and
the state of the art in Figure 15. Each histogram is computed using
all 47 videos from the STU, UBC, and COST datasets. From such
plots, we can notice that our method extends the dynamic range
of SDR videos both in the bright and dark areas with a behavior
very similar to EIL and SAN. This indicates that the methods that
perform best according to the objective metrics generate similar
histograms; however our method learns from the input video alone
rather than being trained on a large corpus of HDR data.

2https://www.cost.eu/actions/IC1005/
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Table 1. This table reports the mean values over each dataset (i.e., all videos)
of PU-PSNR, PU-SSIM, and HDR-VDP2.2, and HDR-VDP3. OUR is the
proposed method with SU sampling and the temporal loss. The red font
color is for the best method, and the blue font for the second best method.
For all metrics, higher values are better.

STU dataset
Method PU-PSNR PU-SSIM HDR-VDP2 HDR-VDP3
OUR 35.26 0.987 58.31 9.86
SAN 33.51 0.926 60.63 9.90
EIL 35.06 0.927 61.16 9.91
LIU 24.19 0.672 55.59 9.57
EXP 26.64 0.824 54.02 9.53
DRT 17.49 0.418 44.44 7.66
JOU 25.92 0.767 56.00 8.05
DH 22.24 0.620 55.51 9.60
LANet 28.21 0.76- 57.44 9.62

UBC dataset
OUR 41.12 0.993 63.028 9.95
SAN 33.28 0.985 64.60 9.96
EIL 33.35 0.983 63.77 9.95
LIU 27.14 0.9446 58.82 9.76
EXP 22.77 0.863 56.88 9.66
DRT 17.80 0.736 50.27 7.96
JOU 21.46 0.870 55.99 8.46
DH 22.60 0.899 58.01 9.65
LANet 28.78 0.954 60.51 9.81

COST dataset
OUR 44.50 0.995 71.11 9.98
SAN 31.53 0.97 68.34 9.98
EIL 31.44 0.972 68.84 9.98
LIU 22.41 0.885 59.96 9.74
EXP 28.92 0.940 62.45 9.91
DRT 14.72 0.748 51.12 8.32
JOU 21.12 0.803 58.91 9.85
DH 19.47 0.840 57.70 8.66
LANet 25.21 0.913 61.71 9.11

4.2 Quantitative with Reference
For quantitative results, the generated inverse tone-mapped videos
for all the methods (including ours with SU sampling and the tempo-
ral loss) were compared with the ground truth using standard met-
rics for HDR applications and inverse tone mapping: HDR-VDP2.2
[47], HDR-VDP3 [40], PU-PSNR [3], and PU-SSIM [3]; for all these
metrics the higher values correspond to better performance. PU-
PSNR and PU-SSIM are modified versions of PSNR and SSIM[60]
where input images are PU-encoded [39], before being processed by
the metric, to handle how the human visual system perceives HDR
data. HDR values follow the VESA DisplayHDR1400 standard3 that
has a peak luminance of 1, 400 cd/m2 and a black level of 0.02 cd/m2.
To generate SDR input frames, we made use of automatic exposure
with temporal filtering to reduce flickering for each frame:

𝐼𝑡
𝑏
=

[ (
𝐼𝑡HDR · 2𝑓

𝑡 ) 1
2.2

]1
0

(14)

where 𝐼𝑡HDR is the 𝑡-th HDR frame, 𝐼𝑡
𝑏
is the SDR frame, 𝑏 = 𝑓 𝑡 is the

exposure value (in f-stop) for the 𝑡-th HDR frame, and [·]10 is the
same rounding and clipping operator as in Eq. 1. Note that the CRF
3https://displayhdr.org/

is a simple gamma encoding to reduce the camera response function
bias [14] when compared with the state-of-the-art methods.
Table 1 summarizes the comparisons for PU-PSNR, PU-SSIM,

HDR-VDP2.2, and HDR-VDP3 for the individual datasets. Means
are computed across all videos for each method and metric. Table 2,
shows results across the datasets and includes statistical analysis.
Using ANOVA there was a main effect for all metrics (p < 0.05).
Subsequent pairwise comparisons with Bonferroni corrections were
conducted. In the table, we group methods that are not significantly
different from each other (at p < 0.05) together in colored brackets.
Methods that are not shown in a group produced results that are
significantly different from all others. As can be seen, OUR is in the
first group for all metrics. These results show that our method works
well in terms of PU-PSNR and PU-SSIM against the state-of-the-art
for the STU and UBC datasets. Although it has reasonable results for
HDR-VDP2.2 and HDR-VDP3, our method does not outperform SAN
and EIL. These results reflect the same ranking as seen in Santos et
al.’s work [51].

It is important to note that, apart from our proposed method, the
other methods were trained using the STU and UBC datasets, which
explains their performance with this metric. Our method does
not use any dataset because it self-learns from the input SDR
video.

However, when comparing our method against the state-of-the-
art using a dataset that was not used by the other methods during
their training, i.e. COST in this case, our method performs signifi-
cantly better than the state-of-the-art across all metrics. This shows
the applicability of the proposed method to generalize well as can
be seen when comparing results across unseen datasets.

4.3 Quantitative without Reference
We also validated our method using real SDR videos captured using
consumer hardware like a smartphone. We captured 21 SDR videos
using an iPhone 12 Mini (see Table 3) covering different lighting
conditions. Then, we converted these videos into HDR ones using
our method and state-of-the-art methods. As in the previous section,
HDR values follow the VESA DisplayHDR1400. Since these videos
have no HDR reference, we employed PIQUE [46] with PU encod-
ing [39]. PIQUE is a popular SDR no-reference metric that computes
an image quality score for an image using a perception-based image
quality evaluator. This metric, with HDR values, encoded using PU,
is recommended for quality assessment of inverse tone mapping
methods without a reference [19]. Table 3 shows the no-reference
results using PU-PIQUE for each scene (showing an SDR input frame
on top) and the overall average. From this result, our method outper-
forms the state-of-the-art in terms of overall performance and also
achieves first and second place for the majority of the sequences.

4.4 Visual Inspection
We also show qualitative results, comparing our method with the
state-of-the-art and the original HDR frames.For all methods, the
input is a 0-stop image from the HDR ground truth (GT). All results
show frames at different exposure levels in which we applied a
simple gamma encoding with 𝛾 = 2.2. There is no tone mapping
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PU-PSNR OUR (37.29) EIL (34.39) SAN (33.29) LANet (28.07) LIU (26.97) EXP (26.01) JOU (24.56) DH (22.07) DRT (17.32)
PU-SSIM OUR (0.99) EIL (0.95) SAN (0.94) LIU (0.92) EXP (0.84) LANet (0.82) JOU (0.79) DH (0.66) DRT (0.51)
HDR-VDP2 EIL (62.11) SAN (61.96) OUR (61.54) LANet (58.46) LIU (56.52) JOU (56.24) DH (56.23) EXP (55.33) DRT (46.27)
HDR-VDP3 EIL (9.92) SAN (9.92) OUR (9.89) LIU (9.63) LANet (9.62) EXP (9.59) DH(9.52) JOU (8.29) DRT (7.76)

Table 2. Overall order across all datasets grouped via statistical significance. Colored groupings demonstrate no significant changes using pairwise comparisons
with Bonferroni corrections at p < 0.05. Individual methods not within a group are significantly different from all others.

Table 3. Results from the no-reference study using real-world data (21 SDR
videos) captured with an iPhone 12 Mini smartphone (lower values are
better). Results computed with PU-PIQUE[19]; lower values are better. The
red font color is for the best method and the blue font for the second best
method. See the additional material for more details on the used scene.

SDR Videos dataset
OUR SAN EIL LIU EXP DRT JOU DH LaNet

Average 37.02 40.34 42.32 55.21 39.65 42.70 58.23 42.97 47.84

operator applied to such frames to avoid distortions that tone map-
ping may introduce in frames both in terms of perceived luminance
levels and colors. All frames and videos are corrected using Hanji
et al.’s CRF correction[19].
Figure 1 and Figure 10 show an example of our method applied

to a challenging scene showing our method reconstructs detail in
overexposed areas of the frames including reconstructing texture
and colors even in the presence of motion blur.
Figure 17 is a challenging example where there is rapid motion

and texture details, colors, and a significant lack of dynamic range
in the input. Our method can generate similar details in terms of
color, dynamic range, and texture. When compared to EIL, for ex-
ample, our method manages to recover more texture and details
in the flames (avoiding checkerboard artifacts due to transposed
convolutions), obtaining similar results to SAN with less unnatural
high-frequencies; see Figure 12.
Figure 13 shows an important feature of our method that self-

learns from the video. In this figure, we have a sequence, “Windows”,
from Table 3, the sequence shows a complex window, which is
unique. EIL and SAN, the best methods from the state-of-the-art
struggle in reconstructing this pattern because it is probably not
present in their training dataset. On the other hand, our method self-
learns this pattern from the other well-exposed portion of the video
during our self-supervised training on the video itself. Therefore, it
can manage the reconstruction of that pattern.

Figure 14 has complex light sources that are mostly clipped. Our
method can achieve a plausible reconstruction similar to SAN and
EIL. Likewise, Figure 11 has clipped light sources and texture details
on the dress. These are reconstructed well with our method, and
the result is comparable to the other state-of-the-art methods.

4.5 Ablation Studies
We conducted three ablation studies to validate our approach and
choices regarding what the network should predict, how to sample
a video, the benefits of taking into account temporal coherence.
Residuals: In the first of such studies, we validated the use of pre-
dicting residuals for generating higher and lower exposure frames.
To achieve this, we compared our method with residuals (Residual),

-4 stop -2 stop 0 stop +2 stop +4 stop
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Fig. 10. This figure compares our approach against state-of-the-art methods
for the challenging Carousel_Fireworks_02 sequence [18]. This shows that
OUR method can reconstruct details in the light sources yet only relies on
the original SDR content.
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Fig. 11. A visual comparison of all tested methods. The frame is part of
the sequence Showgirl_01 [18]. This shows that the OUR method can re-
construct details in the lights and dress and performs similarly to other
methods yet only relies on the original SDR content.

see Figure 7, against the same network trained on predicting higher
and lower exposures (End2End). In this study, we employed S6 sam-
pling and we disabled the temporal loss for the sake of simplicity.
Table 4 reports the results of this study and it clearly confirms that
predicting residuals instead of an entire image produces higher-
quality results.

Sampling Frames: In the second study, we determined the effec-
tiveness of the SU sampling strategy versus S6; the regular sampling

SAN OUR

ORIGINAL EIL

Fig. 12. An example at -4-stop from Figure 17 comparing EIL, SAN, and OUR
method in the detailed region. EIL shows fewer details than the original HDR
image and checkerboard artifacts due to the use of transposed convolutions.
SAN creates more details, and it adds a lot of high-frequency details that
may look unnatural. OUR approach sits in the middle providing a trade-off
between details and smoothness.

Table 4. This table reports the results of the ablation study when predicting
residuals (Residual) or an exposure (End2End); the mean values over each
dataset (i.e., all videos) of PU-PSNR, PU-SSIM, and HDR-VDP2.2, and HDR-
VDP3. This study was computed with S6 sampling and without the temporal
loss. The red font color highlights the best method. For all metrics, higher
values are better.

STU dataset
Method PU-PSNR PU-SSIM HDR-VDP2 HDR-VDP3
Residual 35.04 0.985 58.28 9.83
End2End 34.08 0.982 57.72 9.79

UBC dataset
Residual 39.19 0.992 63.56 9.94
End2End 35.81 0.986 61.12 9.83

COST dataset
Residual 44.15 0.993 59.20 9.91
End2End 34.20 0.957 57.77 9.78

every six frames. Therefore, we trained our network with SU and
S6 for all datasets (we disabled the temporal loss for the sake of sim-
plicity); Table 5 shows the results of this study. From these results,
the SU sampling method performs overall better than S6 for the ma-
jority of metrics. This shows that the method provides high-quality
results and saves computational time.

Temporal Loss: In the third ablation study, we further tested our
method to understand if the temporal loss is beneficial. For this test,
we added the Smoothness metric (S) [14] to determine if the video
is less smooth (S < 1.0) or smoother (S ≥ 1) than the original HDR
video. Table 6 reports the results of this study. This elicits that the
temporal loss always generates videos that are temporally smooth
S ≥ 1 as much as the original HDR video in the reconstructed areas.
Furthermore, the temporal loss provides, in the overall, better values
of PU-PSNR, PU-SSIM, HDR-VDP2.2, and HDR-VDP3 than without
it; in the majority of cases. An important thing to highlight is that
the method without the temporal loss can achieve, in the majority
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(a) Input SDR Frame. (b) OUR at -2-stop.

(c) SAN at -2-stop. (d) EIL at -2-stop.

Fig. 13. An example of the video Windows used in Section 4.3 and Table 3.
In this example, the input SDR frame (a) exhibits a window with a complex
pattern. Since this pattern is unique it may be difficult to reconstruct properly
if it is not present in the learning dataset for dataset-based techniques. OUR
technique can reconstruct this pattern better than SAN and EIL (the best
methods from the state-of-the-art) because it self-learns this pattern from
its input video.

Table 5. Results from the ablation study predicting residuals using the two
sampling strategies S6 and SU; the mean values over each dataset (i.e., all
videos) of PU-PSNR, PU-SSIM, HDR-VDP2.2, and HDR-VDP3. The temporal
loss is disabled for the sake of clarity. As before, the red font color is for the
best method. For all metrics, higher values are better.

STU dataset

Method PU-PSNR PU-SSIM HDR-
VDP2

HDR-
VDP3

Residual+SU 35.07 0.987 58.36 9.83
Residual+S6 35.04 0.985 58.28 9.83

UBC dataset
Residual+SU 41.24 0.993 62.12 9.95
Residual+S6 39.19 0.992 63.56 9.94

COST dataset
Residual+SU 43.72 0.996 69.86 9.91
Residual 44.15 0.993 59.20 9.91

of cases reasonable performance. However, the use of temporal loss
improves the quality of the outcome.

4.6 ImprovingQuality and Computational Efficiency
In this section, we show how to further improve quality and timings
for our method using straightforward strategies. With the method
described in Section 3 the training time for a single epoch is on
average 7.460 seconds on the hardware used in this study. This
means that reaching the plateau (64-128 epochs) requires between
8-15 minutes, and this is independent of the length of the video.

Table 6. This table shows the results of the temporal loss ablation study
(with/without); the mean values over each dataset (i.e., all videos) of PU-
PSNR, PU-SSIM, HDR-VDP2.2, HDR-VDP3, and Smoothness S. The red font
color is for the best method. For all metrics, higher values are better.

STU dataset

Method PU-PSNR PU-SSIM HDR-
VDP2

HDR-
VDP3 S

Residual+SU+Temporal 35.26 0.987 58.31 9.86 1.29
Residual+SU 35.07 0.987 58.36 9.83 1.28

UBC dataset
Residual+SU+Temporal 41.12 0.993 63.03 9.95 1.00
Residual+SU 41.24 0.992 62.12 9.95 0.98

COST dataset
Residual+SU+Temporal 44.50 0.996 71.11 9.98 1.02
Residual+SU 43.72 0.996 69.86 9.91 1.03

Therefore, we firstly propose a method that uses batches of videos
to further improve quality, and then focus on computational effi-
ciency by proposing two strategies to significantly speed up the self-
training phase: 1) pre-training on a dataset of SDR videos followed
by fine-tuning when expanding a video; 2) reducing the samples
needed to train the network.

Batch Training: In many real-world scenarios, users capture simi-
lar videos (for example at the same location), and they may need to
expand all of them together. Therefore, we studied what happens
when all our videos are trained together (STU, UBC, and COST
datasets); i.e., picking 128 samples from each video. Table 7 reports
the results of this experiment titled “128-sample Batch”. From these
results, the quality has improved when compared to OUR method
which trains each video separately. However, the training time for
epoch increases greatly to 164 seconds. The following section helps
mitigate this increase.

Table 7. Results from the optimization strategy reducing samples; the mean
values over each dataset (i.e., all videos) of PU-PSNR, PU-SSIM, HDR-
VDP2.2, and HDR-VDP3. The temporal loss is disabled for the sake of clarity.
As before, the red font color is the best method, and the blue font color is
the second best method. For all metrics, higher values are better.

STU dataset

Method PU-PSNR PU-SSIM HDR-
VDP2

HDR-
VDP3

Residual+SU+Temporal 35.26 0.987 58.31 9.83
128-Sample Batch 36.54 0.989 58.99 9.84
4-Sample 34.89 0.987 58.28 9.82
Small-Sample Batch 35.80 0.988 58.71 9.83

UBC dataset
Residual+SU+Temporal 41.12 0.993 63.03 9.95
128-Sample Batch 43.28 0.996 66.45 9.97
4-Sample 41.02 0.994 65.86 9.96
Small-Sample Batch 41.86 0.994 64.16 9.96

COST dataset
Residual+SU+Temporal 44.50 0.996 71.11 9.98
128-Sample Batch 45.82 0.997 65.23 9.99
4-Sample 39.62 0.993 60.95 9.937
Small-Sample Batch 43.59 0.996 71.16 9.98

Reducing Samples: To speed up the computation time, we ex-
ploit the trade-off between training time and the number of sample
frames, 𝑛𝑠 . Therefore, we ran our method using 𝑛𝑠 = 4 instead of
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Fig. 14. This image shows a frame from the sequence Beerfest_04 [18]. Our
method has a reconstruction performance similar to SAN and EIL and is
able to plausibly reconstruct the lighting in this scene.

𝑛𝑠 = 128 as proposed in Section 3.2.1 using our sampling strategy
SU. Table 7 shows the results of this study titled “4-Sample”. From
this, it is clear that 𝑛𝑠 = 4 reduces the overall quality, although the
results are still better than some the state of the art methods; see
Table 1. With regards to timings, the method takes less than 0.659
seconds to complete a single epoch; completing the entire training
in less than two minutes.

In light of this encouraging result we extended our batching strat-
egy using a total of 𝑛𝑠 = 128, by taking 2-3 frames for each video
using our sampling strategy SU. The idea is to train together all
videos from our datasets (STU, UBC, and COST) at the same cost
as a single video. Taking only 7.46 seconds per epoch, this speeds
the process up by a factor of 47 times compared to train each single
video with our method. Table 7 shows the results of this study ti-
tled “Small-Sample Batch”. From this test, it is clear that quality is
higher than training each single video separately, and it is a viable
optimization when a batch of videos needs to be expanded together.

Pre-training with Fine-Tuning: Another viable approach for im-
proving computational efficiency is pre-training followed by fine-
tuning. The first step of this strategy is to pre-train our network
using a dataset of SDR videos. Then, when a novel SDR video (not
present in the pre-training dataset) needs to be expanded, we load
the pre-trained weights, and fine-tune the weights using our self-
supervised scheme for a few epochs. For this study, we used 23 SDR
videos as a pre-training dataset. The pre-training required less than
7 hours to reach a plateau. We show results for 1, 4, and 8 epochs
of fine-tuning and these take, respectively 7.46 seconds, 30.01 sec-
onds, and 58.83 seconds to train after the pre-training stage. Table 8
shows the results of this experiment. From these results, it is no-
ticeable that pre-training achieves further improved results and the
8-epoch fine-tuning requires less than a minute. These results are to
be expected as this solution combines the strengths of dataset-based
methods with the proposed approach to tailor the weights to the
specific video.

4.7 Hanji Correction
For further comparison, we analyzed our data applying Hanji et al.’s
CRF correction [19]. This correction improves the CRF inversion
by exploiting the ground truth or reference image, which is strictly
required for the correction. While the reference image is not typ-
ically available for the larger characterization of the inverse tone
mapping problem, we include these results for completeness. Table 9
reports the results of such comparisons. This shows that even in
the presence of the additional non-linearity; i.e., the correction, our
method is still competitive with the state-of-the-art.

4.8 Limitations
To learn texture and dynamic range details from a single SDR
video in an effective way, our network needs to view moving peo-
ple/objects and/or to view the scene from different points of view
through camera motion. This is because over-exposed or under-
exposed parts of the video may become well-exposed when these
parts are not static. When the motion in an input SDR video is lim-
ited, our network may not be able to discover how to recover texture
and dynamic range in under-exposed and over-exposed parts of the
video. Figure 16 shows a frame from the sequence Bistro_01 [18]
and the expanded frames at exposures -4-stop and -2-stop. This
scene has very limited motion, only the candles in the background
(green square), which limits the recovery capabilities of our method
to only the flames of the candles.
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(a) OUR (b) SAN (c) EIL

(d) LIU (e) EXP (f) DRT

(g) JOU (h) DH (i) LaNet

Fig. 15. Pixel values from our model and the start of the art methods for COST, STU, and UBC datasets. For each method, we plot the original SDR data
histogram (“SDR Linear”) in blue, the HDR ground-truth data (“HDR GT”) in yellow, and the expanded HDR data of that method in red. (a) shows that our
method extends the dynamic range for both underexposed and underexposed pixel values.

5 CONCLUSIONS AND FUTURE WORK
In this work, we have shown that a self-supervised approach can
expand the dynamic range of SDR videos and it is possible to re-
cover both missing details in terms of texture and dynamic range.
To achieve this, we have employed self-supervised strategies. The
proposed method can achieve high-quality results that improve
on fully-supervised state-of-the-art techniques both visually and
in terms of several metrics. This is particularly useful as it does
not require reliance upon an external HDR dataset. One important
advantage of our method is the ability to learn patterns that are
unique in the video and are not present in a dataset; see Figure 13.

The method performs best when there is motion in the video;
ideally both in terms of people/objects and camera motion that
exhibit different exposures across the frames such that the training
process can form a fuller understanding of the scene’s dynamic
range. To improve quality and computational efficiency, we have
proposed different strategies to improve computational efficiency
including pre-training followed by fine-tuning, and training batches
of videos together while reducing the number of samples 𝑛𝑠 . Both
approaches achieve a significant speedup whilst also maintaining
high quality.
This work confirms our hypothesis that SDR videos can be expanded
without an external dataset and produce reasonably high-quality
results that are competitive with fully-supervised methods. In future
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Table 8. Results from the optimization strategy using Pre-training and fine
tuning on the video itself at different epochs; the mean values over each
dataset (i.e., all videos) of PU-PSNR, PU-SSIM, HDR-VDP2.2, and HDR-
VDP3. The temporal loss is disabled for the sake of clarity. As before, the
red font color is the best method, and the blue font color is the second best
method. For all metrics, higher values are better.

STU dataset

Method PU-PSNR PU-SSIM HDR-
VDP2

HDR-
VDP3

Residual+SU+Temporal 35.26 0.987 58.31 9.87
Pre-train + 1-epoch Fine Tuning 37.08 0.991 59.81 9.88
Pre-train + 4-epoch Fine Tuning 37.41 0.991 59.90 9.88
Pre-train + 8-epoch Fine Tuning 37.55 0.991 60.13 9.89

UBC dataset
Residual+SU+Temporal 41.12 0.993 63.03 9.96
Pre-train + 1-epoch Fine-Tuning 41.90 0.995 66.34 9.96
Pre-train + 4-epoch Fine-Tuning 41.86 0.995 66.16 9.96
Pre-train + 8-epoch Fine-Tuning 42.36 0.995 66.33 9.97

COST dataset
Residual+SU+Temporal 44.50 0.995 71.11 9.98
Pre-train + 1-epoch Fine-Tuning 44.92 0.997 64.64 9.98
Pre-train + 4-epoch Fine-Tuning 45.21 0.997 64.89 9.98
Pre-train + 8-epoch Fine-Tuning 43.83 0.997 64.67 9.97

Fig. 16. A limitation example (Bistro_01) [18]). Here our method can only
reconstruct the candles in the green square because they move while the
rest of the overexposed scene (the table and the bottles) does not have
motion. Top: On the left, the input SDR frame; In the middle, the recovered
frame at -2 stops using our method; On the right, the recovered frame at -4
stops using our method. Bottom: the zooms of the respective green square
areas.

work, wewould like to generalize ourmethod and apply it to existing
ITMOs for fine-tuning to provide temporal coherency and optimize
training weights to the content of the input video.
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Table 9. This table reports the mean values over each dataset (i.e., all videos)
of PU-PSNR, PU-SSIM, HDR-VDP2.2, and HDR-VDP3. OUR is the proposed
method with SU sampling and temporal loss. The red font color is the best
method, and the blue font color is for the second best method. For all metrics,
higher values are better. This table reports results with application of the
Hanji et al.’s CRF correction[19].

STU dataset
Method PU-PSNR PU-SSIM HDR-VDP2 HDR-VDP3
OUR 34.08 0.971 59.57 9.87
SAN 33.60 0.968 61.01 9.90
EIL 35.805 0.978 61.17 9.91
LIU 26.41 0.915 55.45 9.71
EXP 28.77 0.906 55.04 9.64
DRT 27.03 0.912 53.40 9.50
JOU 31.32 0.958 56.95 9.77
DH 29.42 0.945 55.78 9.71
LANet 29.24 0.921 56.51 9.73

UBC dataset
OUR 42.25 0.995 66.90 9.96
SAN 44.39 0.997 68.67 9.96
EIL 41.82 0.985 66.62 9.95
LIU 32.00 0.969 61.40 9.90
EXP 34.85 0.985 61.47 9.91
DRT 36.31 0.986 60.76 9.92
JOU 37.53 0.988 61.51 9.93
DH 36.04 0.988 63.41 9.92
LANet 34.15 0.980 63.29 9.88

COST dataset
OUR 42.05 0.996 64.79 9.98
SAN 39.59 0.995 65.44 9.99
EIL 41.26 0.995 66.25 9.99
LIU 32.00 0.969 61.40 9.90
EXP 34.85 0.985 61.47 9.91
DRT 36.31 0.986 60.76 9.92
JOU 37.53 0.988 61.51 9.93
DH 34.47 0.983 60.07 9.90
LANet 35.45 0.982 62.65 9.93
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Fig. 17. This shows a frame from the sequence Fireplace_02 [18]. Different exposures of the reconstructed HDR image are shown from left to right, and
different ITMOs are shown vertically. This illustrates that our method can generate similar details to the Ground Truth in terms of color, dynamic range, and
texture.
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