1,545 research outputs found

    Dielectric and optical evaluation of high-emissivity coatings for temperature measurements in microwave applications

    Get PDF
    In this work, several commercial high-emissivity coatings have been characterized in terms of emissivity, chemical composition and dielectric properties as a function of temperature, under microwave irradiation. Accurate knowledge of their response under exposure to microwaves provides new and crucial information about their practical usability for non-contact temperature measurements in microwave environments. Due to their high metallic content, some of the studied coatings exhibited unexpected microwave-triggered reactions that hindered their use up to the maximum temperature specified by the manufacturers. Emissivity and chemical analyses before and after the heating cycles confirmed the degradation of some of the samples predicted by dielectric measurements. This work illustrates how a careful characterization of optical and dielectric properties under representative operating conditions (temperature range, microwave exposure) is vital in order to select the appropriate reference coating to obtain reliable temperature measurements in microwave applications

    Thermodynamic glass transition in a spin glass without time-reversal symmetry

    Get PDF
    Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by applying an external magnetic field, but embarrassingly little is known about the critical behaviour of a spin glass in a field. In this context, the space dimension is crucial. Simulations are easier to interpret in a large number of dimensions, but one must work below the upper critical dimension (i.e., in d<6) in order for results to have relevance for experiments. Here we show conclusive evidence for the presence of a phase transition in a four-dimensional spin glass in a field. Two ingredients were crucial for this achievement: massive numerical simulations were carried out on the Janus special-purpose computer, and a new and powerful finite-size scaling method.Comment: 10 pages, 6 figure

    Genomic markers associated with antibody response to Newcastle disease virus of Sasso chickens raised in Ethiopia

    Get PDF
    Newcastle disease virus (NDV) is one of the highly contagious avian pathogens that threatens poultry producers in endemic zones due to its epidemic potential. Selection for antibody (Ab) response can effectively improve disease resistance in chickens. However, the molecular basis of the variation in Ab response to NDV is unclear. This study aimed to detect genomic markers and genes modulating Ab response to NDV in chickens reared under tropical, outdoor conditions. A genome-wide association study (GWAS) was conducted on Sasso T451A chickens that were naturally exposed to infectious diseases from 56 to 112 days of age to identify regions associated with Ab response to NDV. Phenotypic immune data from 935 chickens, monitored in two batches, and genotyping data of these chickens based low-pass sequencing (2,676,181 single nucleotide polymorphisms, SNPs) were used. BioMart data mining and variant effect predictor tools were used to annotate SNPs and candidate genes, respectively. A total of five SNPs (rs316795557 (FOXP2), chr 1; rs313761644 (CEP170B), chr 5; rs733628728, chr 13; and two unnamed SNPs, chr 30 and chr 33) were associated with the chicken antibody response to NDV at the suggestive significance level. These SNPs are located on chromosomes 1, 5, and 13 and are in genomic regions that contain several genes with roles in the regulation of the immune response. The results of this study pave the path for more investigation into the host immune response of chickens to NDV.</p

    Pediatr Nephrol

    Get PDF
    BACKGROUND: In patients with primary hyperoxaluria (PH), endogenous oxalate overproduction increases urinary oxalate excretion, leading to compromised kidney function and often kidney failure. Highly elevated plasma oxalate (Pox) is associated with systemic oxalate deposition in patients with PH and severe chronic kidney disease (CKD). The relationship between Pox and estimated glomerular filtration rate (eGFR) in patients with preserved kidney function, however, is not well established. Our analysis aimed to investigate a potential correlation between these parameters in PH patients from three randomized, placebo-controlled trials (studies OC3-DB-01, OC3-DB-02, and OC5-DB-01). METHODS: Baseline data from patients with a PH diagnosis (type 1, 2, or 3) and eGFR > 40 mL/min/1.73 m(2) were analyzed for a correlation between eGFR and Pox using Spearman's rank and Pearson's correlation coefficients. Data were analyzed by individual study and additionally were pooled for Studies OC3-DB-02 and OC5-DB-01 in which the same Pox assay was used. RESULTS: A total of 106 patients were analyzed. A statistically significant inverse Spearman's correlation between eGFR and Pox was observed across all analyses; correlation coefficients were - 0.44 in study OC3-DB-01, - 0.55 in study OC3-DB-02, - 0.51 in study OC5-DB-01, and - 0.49 in the pooled studies (p < 0.0064). CONCLUSIONS: Baseline evaluations showed a moderate and statistically significant inverse correlation between eGFR and Pox in patients with PH already at early stages of CKD (stages 1-3b), demonstrating that a correlation is present before substantial loss in kidney function occurs

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum

    Planck pre-launch status: The optical system

    Get PDF
    Planck is a scientific satellite that represents the next milestone in space-based research related to the cosmic microwave background, and in many other astrophysical fields. Planck was launched on 14 May of 2009 and is now operational. The uncertainty in the optical response of its detectors is a key factor allowing Planck to achieve its scientific objectives. More than a decade of analysis and measurements have gone into achieving the required performances. In this paper, we describe the main aspects of the Planck optics that are relevant to science, and the estimated in-flight performance, based on the knowledge available at the time of launch. We also briefly describe the impact of the major systematic effects of optical origin, and the concept of in-flight optical calibration. Detailed discussions of related areas are provided in accompanying papers

    Using a virtual environment to assess cognition in the elderly

    Get PDF
    YesEarly diagnosis of Alzheimer’s disease (AD) is essential if treatments are to be administered at an earlier point in time before neurons degenerate to a stage beyond repair. In order for early detection to occur tools used to detect the disorder must be sensitive to the earliest of cognitive impairments. Virtual reality (VR) technology offers opportunities to provide products which attempt to mimic daily life situations, as much as is possible, within the computational environment. This may be useful for the detection of cognitive difficulties. We develop a virtual simulation designed to assess visuospatial memory in order to investigate cognitive function in a group of healthy elderly participants and those with a mild cognitive impairment. Participants were required to guide themselves along a virtual path to reach a virtual destination which they were required to remember. The preliminary results indicate that this virtual simulation has the potential to be used for detection of early AD since significant correlations of scores on the virtual environment with existing neuropsychological tests were found. Furthermore, the test discriminated between healthy elderly participants and those with a mild cognitive impairment (MCI)
    corecore