591 research outputs found
Formulation of the Boltzmann Equation as a Multi-Mode Drift-Diffusion Equation
We present a multi-mode drift-diffusion equation as reformulation of the Boltzmann equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M x 1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon
Simulating Quasi-Ballistic Transport in Si Nanotransistors
Electron transport in model Si nanotransistors is examined by numerical simulation using a hierarchy of simulation methods, from full Boltzmann, to hydrodynamic, energy transport, and drift-diffusion. The on-current of a MOSFET is shown to be limited by transport across a low-field region about one mean-free-path long and located at the beginning of the channel. Commonly used transport models based on simplified solutions of the Boltzmann equation are shown to fail under such conditions. The cause for this failure is related to the neglect of the carriers\u27 drift energy and to the collision-dominated assumptions typically used in the development of simplified transport models
A call to action: Addressing the reproductive health needs of women with drug-resistant tuberculosis
Although there is substantial risk to maternal and neonatal health in the situation of pregnancy during treatment for rifampicin-resistant tuberculosis (RR-TB), there is little evidence to guide clinicians as to how to manage this complexity. Of the 49 680 patients initiated on RR-TB treatment from 2009 to 2014 in South Africa, 47% were women and 80% of them were in their reproductive years (15 - 44). There is an urgent need for increased evidence of the safety of RR-TB treatment during pregnancy, increased access to contraception during RR-TB treatment, and inclusion of reproductive health in research on the prevention and treatment of TB
Guiding equitable prioritisation of COVID-19 vaccine distribution and strategic deployment in South Africa to enhance effectiveness and access to vulnerable communities and prevent waste
BACKGROUND. In South Africa (SA), >2.4 million cases of COVID 19 and >72 000 deaths were recorded between March 2020 and 1 August 2021, affecting the country’s 52 districts to various extents. SA has committed to a COVID 19 vaccine roll-out in three phases, prioritising frontline workers, the elderly, people with comorbidities and essential workers. However, additional actions will be necessary to support efficient allocation and equitable access for vulnerable, access-constrained communities. OBJECTIVES. To explore various determinants of disease severity, resurgence risk and accessibility in order to aid an equitable, effective vaccine roll-out for SA that would maximise COVID 19 epidemic control by reducing the number of COVID 19 transmissions and resultant deaths, while at the same time reducing the risk of vaccine wastage. METHODS. For the 52 districts of SA, 26 COVID 19 indicators such as hospital admissions, deaths in hospital and mobility were ranked and hierarchically clustered with cases to identify which indicators can be used as indicators for severity or resurgence risk. Districts were then ranked using the estimated COVID 19 severity and resurgence risk to assist with prioritisation of vaccine roll-out. Urban and rural accessibility were also explored as factors that could limit vaccine roll-out in hard-to-reach communities. RESULTS. Highly populated urban districts showed the most cases. Districts such as Buffalo City, City of Cape Town and Nelson Mandela Bay experienced very severe first and second waves of the pandemic. Districts with high mobility, population size and density were found to be at highest risk of resurgence. In terms of accessibility, we found that 47.2% of the population are within 5 km of a hospital with ≥50 beds, and this percentage ranged from 87.0% in City of Cape Town to 0% in Namakwa district. CONCLUSIONS. The end goal is to provide equal distribution of vaccines proportional to district populations, which will provide fair protection. Districts with a high risk of resurgence and severity should be prioritised for vaccine roll-out, particularly the major metropolitan areas. We provide recommendations for allocations of different vaccine types for each district that consider levels of access, numbers of doses and cold-chain storage capability.The American people through the United States Agency for International Development (USAID).http://www.samj.org.zadm2022Human Nutritio
Testing the sensitivity and specificity of the fluorescence microscope (Cyscope®) for malaria diagnosis
<p>Abstract</p> <p>Background</p> <p>Early diagnosis and treatment of malaria are necessary components in the control of malaria. The gold standard light microscopy technique has high sensitivity, but is a relatively time-consuming procedure especially during epidemics and in areas of high endemicity. This study attempted to test the sensitivity and specificity of a new diagnostic tool - the Cyscope<sup>® </sup>fluorescence microscope, which is based on the use of Plasmodium nucleic acid-specific fluorescent dyes to facilitate detection of the parasites even in low parasitaemia conditions due to the contrast with the background.</p> <p>Methods</p> <p>In this study, 293 febrile patients above the age of 18 years attending the malaria treatment centre in Sinnar State (Sudan) were interviewed using a structured questionnaire. Finger-prick blood samples were also collected from the participants to be tested for malaria using the hospital's microscope, the reference laboratory microscope, as well as the Cyscope<sup>® </sup>microscope. The results of the investigations were then used to calculate the sensitivity, specificity, and positive and negative predictive values of the Cyscope<sup>® </sup>microscope in reference to gold standard light microscopy.</p> <p>Results</p> <p>The sensitivity was found to be 98.2% (95% CI: 90.6%-100%); specificity = 98.3% (95% CI: 95.7% - 99.5%); positive predictive value = 93.3% (95% CI: 83.8% - 98.2%); and negative predictive value = 99.6% (95% CI: 97.6% - 100%).</p> <p>Conclusions</p> <p>In conclusion, the Cyscope<sup>® </sup>microscope was found to be sensitive, specific and provide rapid, reliable results in a matter of less than 10 minutes. The Cyscope<sup>® </sup>microscope should be considered as a viable, cheaper and time-saving option for malaria diagnosis, especially in areas where <it>Plasmodium falciparum </it>is the predominant parasite.</p
A Novel Hepatitis C Virus Genotyping Method Based on Liquid Microarray
The strategy used to treat HCV infection depends on the genotype involved. An accurate and reliable genotyping method is therefore of paramount importance. We describe here, for the first time, the use of a liquid microarray for HCV genotyping. This liquid microarray is based on the 5′UTR — the most highly conserved region of HCV — and the variable region NS5B sequence. The simultaneous genotyping of two regions can be used to confirm findings and should detect inter-genotypic recombination. Plasma samples from 78 patients infected with viruses with genotypes and subtypes determined in the Versant™ HCV Genotype Assay LiPA (version I; Siemens Medical Solutions, Diagnostics Division, Fernwald, Germany) were tested with our new liquid microarray method. This method successfully determined the genotypes of 74 of the 78 samples previously genotyped in the Versant™ HCV Genotype Assay LiPA (74/78, 95%). The concordance between the two methods was 100% for genotype determination (74/74). At the subtype level, all 3a and 2b samples gave identical results with both methods (17/17 and 7/7, respectively). Two 2c samples were correctly identified by microarray, but could only be determined to the genotype level with the Versant™ HCV assay. Genotype “1” subtypes (1a and 1b) were correctly identified by the Versant™ HCV assay and the microarray in 68% and 40% of cases, respectively. No genotype discordance was found for any sample. HCV was successfully genotyped with both methods, and this is of prime importance for treatment planning. Liquid microarray assays may therefore be added to the list of methods suitable for HCV genotyping. It provides comparable results and may readily be adapted for the detection of other viruses frequently co-infecting HCV patients. Liquid array technology is thus a reliable and promising platform for HCV genotyping
A Multicenter Evaluation of Diagnostic Tools to Define Endpoints for Programs to Eliminate Bancroftian Filariasis
Successful mass drug administration (MDA) campaigns have brought several countries near the point of Lymphatic Filariasis (LF) elimination. A diagnostic tool is needed to determine when the prevalence levels have decreased to a point that MDA campaigns can be discontinued without the threat of recrudescence. A six-country study was conducted assessing the performance of seven diagnostic tests, including tests for microfilariae (blood smear, PCR), parasite antigen (ICT, Og4C3) and antifilarial antibody (Bm14, PanLF, Urine SXP). One community survey and one school survey were performed in each country. A total of 8,513 people from the six countries participated in the study, 6,443 through community surveys and 2,070 through school surveys. Specimens from these participants were used to conduct 49,585 diagnostic tests. Each test was seen to have both positive and negative attributes, but overall, the ICT test was found to be 76% sensitive at detecting microfilaremia and 93% specific at identifying individuals negative for both microfilariae and antifilarial antibody; the Og4C3 test was 87% sensitive and 95% specific. We conclude, however, that the ICT should be the primary tool recommended for decision-making about stopping MDAs. As a point-of-care diagnostic, the ICT is relatively inexpensive, requires no laboratory equipment, has satisfactory sensitivity and specificity and can be processed in 10 minutes—qualities consistent with programmatic use. Og4C3 provides a satisfactory laboratory-based diagnostic alternative
Diagnosis of Tuberculosis in the Wild Boar (Sus scrofa): A Comparison of Methods Applicable to Hunter-Harvested Animals
To obtain robust epidemiological information regarding tuberculosis (TB) in wildlife species, appropriate diagnostic methods need to be used. Wild boar (Sus scrofa) recently emerged as a major maintenance host for TB in some European countries. Nevertheless, no data is available to evaluate TB post-mortem diagnostic methods in hunter-harvested wild boar.
METHODOLOGY/PRINCIPAL FINDINGS:
Six different diagnostic methods for TB were evaluated in parallel in 167 hunter-harvested wild boar. Compared to bacteriological culture, estimates of sensitivity of histopathology was 77.8%, gross pathology 72.2%, PCR for the MPB70 gene 66.7%, detection of acid-fast bacilli (AFB) in tissue contact smears 55.6% and in histopathology slides 16.7% (estimated specificity was 96.7%, 100%, 100%, 94.4% and 100%, respectively). Combining gross pathology with stained smears in parallel increased estimated sensitivity to 94.4% (94.4% specificity). Four probable bacteriological culture false-negative animals were identified by Discriminant Function Analysis. Recalculating the parameters considering these animals as infected generated estimated values for sensitivity of bacteriology and histopathology of 81.8%, gross pathology 72.7%, PCR for the MPB70 gene 63.6%, detection of AFB in tissue contact smears 54.5% and in histopathology slides 13.6% (estimated specificity was 100% for gross pathology, PCR, bacteriology and detection of AFB in histopathology slides, 96.7% for histopathology and 94.4% for stained smears).
CONCLUSIONS/SIGNIFICANCE:
These results show that surveys for TB in wild boar based exclusively on gross pathology considerably underestimate prevalence, while combination of tests in parallel much improves sensitivity and negative predictive values. This finding should thus be considered when planning future surveys and game meat inspection schemes. Although bacteriological culture is the reference test for TB diagnosis, it can generate false-negative results and this should be considered when interpreting data.This study was funded by laboratory funds from Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript
Recommended from our members
Measurements of long-range two-particle correlation over a wide pseudorapidity range in p–Pb collisions at sNN = 5.02 TeV
Correlations in azimuthal angle extending over a long range in pseudorapidity between particles, usually called the “ridge” phenomenon, were discovered in heavy-ion collisions, and later found in pp and p–Pb collisions. In large systems, they are thought to arise from the expansion (collective flow) of the produced particles. Extending these measurements over a wider range in pseudorapidity and final-state particle multiplicity is important to understand better the origin of these long-range correlations in small collision systems. In this Letter, measurements of the long-range correlations in p–Pb collisions at sNN = 5.02 TeV are extended to a pseudorapidity gap of ∆η ~ 8 between particles using the ALICE forward multiplicity detectors. After suppressing non-flow correlations, e.g., from jet and resonance decays, the ridge structure is observed to persist up to a very large gap of ∆η ~ 8 for the first time in p–Pb collisions. This shows that the collective flow-like correlations extend over an extensive pseudorapidity range also in small collision systems such as p–Pb collisions. The pseudorapidity dependence of the second-order anisotropic flow coefficient, v2(η), is extracted from the long-range correlations. The v2(η) results are presented for a wide pseudorapidity range of –3.1 < η < 4.8 in various centrality classes in p–Pb collisions. To gain a comprehensive understanding of the source of anisotropic flow in small collision systems, the v2(η) measurements are compared with hydrodynamic and transport model calculations. The comparison suggests that the final-state interactions play a dominant role in developing the anisotropic flow in small collision systems
- …