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Formulation of the Boltzmann Equation as a Multi-Mode
Drift-Diffusion Equation
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We present a multi-mode drift-diffusion equation as reformulation of the Boltzmann
equation in the discrete momentum space. This is shown to be similar to the
conventional drift-diffusion equation except that it is a more rigorous solution to the
Boltzmann equation because the current and carrier densities are resolved into M
vectors, where M is the number of modes in the discrete momentum space. The mobility
and diffusion coefficient become M M matrices which connect the M momentum space
modes. This approach is demonstrated by simulating electron transport in bulk silicon.

Keywords: Semi-classical Boltzmann equation, non-equilibrium transport, multi-mode drift-
diffusion

1 INTRODUCTION

With the continued down-scaling of semiconduc-
tor devices, there is a need to develop device
simulators that can treat carrier transport taking
into account off-equilibrium carrier distributions
by solving the Boltzmann Transport Equation as
accurately as possible. Several techniques have
been developed to do so-such as the Monte Carlo
[1], hydrodynamic [2], spherical harmonic [3], and
cellular automata methods [4], and the Scattering
Matrix Approach [5, 6, 7]. Each method has its
own limitations-for example, computational bur-
den, calibration of parameters, low order approx-
imation for the distribution function, "artificial

diffusion" of carriers and restriction to fixed
spatial square grids. Ideally, a simulation method
should provide all the capabilities of drift-diffusion
simulators (i.e., simulations from equilibrium to
high bias with smooth results at low computa-
tional burden) while also resolving carrier distribu-
tion and treating scattering processes rigorously.
Our objective in this paper is to take a step in this
direction.

Therefore, here we will describe a re-formula-
tion of the scattering matrix equations which
expresses the 1-D spatial Boltzmann equation as
a 1-D spatial drift-diffusion equation in a dis-
cretised 3-D momentum space. The current and
carrier densities generalise to M vectors, where
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M is the number of modes in the discrete 3-D
momentum space. The mobility and diffusion co-
efficient become MM matrices which connect the
M momentum space modes. Solving the Boltz-
mann equation, then, reduces to solving a set ofM
coupled drift-diffusion equations which might be
done by a generalisation of the standard techni-
ques for solving the conventional drift-diffusion
Equation [8].

FORMULATION OF THE MULTI-MODE
DD EQUATION

The one-mode method of McKelvey [9, 10] and
similar observations by Shockley [11] can be
generalised to M-modes in 3-D momentum space
and this gives us an expression for the differential
flux equations in 1-D real space for the M-modes
in momentum space as follows [7]

7e(x) [2(x)] [22(x)1 J-(x)
(1)

where the Mx vectors J+ (x) and -re(x) are the
fluxes discretised in positive and negative direc-
tions ofmomentum Px respectively, at a position x.
The elements of the (M M) differential matrices

[{/(x)] can be interpreted as the inverse of an inter-

mode mean free path in presence of all possible
scattering mechanisms. In general, these terms can
be difficult to calculate analytically and therefore
we use an indirect procedure. The space-indepen-
dent differential [{/] matrices are calculated from
the matrix logarithm of the transmission matrix of
a semiconductor slab divided by the slab thickness.
The transmission matrix itself is obtained from the
scattering matrix calculated by Monte Carlo
techniques [7]. All possible information about the
underlying physics of scattering (band structure,
phonons, ionised impurities and electric field) that
is included in the Monte Carlo simulation is
automatically embedded in the scattering matrix
and hence in the [so0-] matrices.

Now returning to Eq. (1), we find its symmetric
and anti-symmetric components and relate each
flux Ji(x) to its velocity vi and its population
density ni(x). Thus, we obtain a multi-mode drift-
diffusion equation and its associated continuity
equation:

d
if(x), (2)](x) e{ #(x)] ff(X)x + e[D(x)]-x

d.(x) [a(x)l.(x) + [/3(x)] if(x) (3)
dx

where the diffusion, inverse Einstein and mobility
matrices are defined as follows:

[O(x)] 2{[11 (x)] q-[12(x)1-+-[21 (X)]

+ [=(X)]}- IV],
(4)

2x
{[11 (X)] [12(X)]

+ [2, (x)l- [22(x)]},

[/(x)]- [D(x)][E]-’, (6)

and IV] is a diagonal matrix whose elements are the
mode velocities.
The coefficient matrices for the continuity

equation are

e
[(x)] {[ (x)] + [,2(x)]

-[(x)]- [=(x)]},
e

[(x)] {[, (x)] [.(x)]

[2 (x)] + [22(x)]} iv].

(7)

(8)

Equations (2) and (3) are the key results of the
paper. Note that they are very similar to the
conventional drift-diffusion form. This multi-
mode drift-diffusion equation has associated
MxM mobility and diffusion matrices that depend
only on the scattering mechanisms and momentum
space discretisation.

It is important to note that the field dependence
of the relevant matrices here. The discrete form of
the Boltzmann Transport Equation [7] indicates
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that each of the differential [ij (x)] submatrices are
linearly dependent on the field, for any given
orientation of the field. This relation makes the
[#(x)], [D(x)], [a(x)] and [/3(x)] matrices straight-
forward to calculate once the invariant zero-field

[0.(x)] matrices and the field-coefficient matrices
are known.

3 RESULTS

In this section, we present some preliminary results
for (111) electric fields in bulk Si. A simple
spherical, non-parabolic energy band structure
was assumed for calculating scattering rates and
the 3-D momentum space was discretised into 400
modes 20 modes in transverse ptla._nd 20 modes
in longitudinal px(this implies 20 J+ fluxes for

+Px and 20 J- fluxes for -Px). Scattering
matrices were computed by Monte Carlo simula-
tion [5-7] and the [ij(X)] matrices were extracted
using the procedure described in Section 2. Higher
levels of accuracy with respect to the underlying
band-structure and scattering can be attained just
by using more sophisticated Monte Carlo techni-
ques. The distribution of the carriers was assumed
to be uniform across the modes, which is adequate
to demonstrate proof-of-concept here.
Having obtained the [0.(x)] matrices, we then

calculated the mobility and diffusion matrices and
examined their structure. These are shown in
Figure 1. Calculating these matrices involves
taking matrix logarithms and inverses which
produces a large number of elements that are

numerically near zero. If we ignore these small
elements, the matrices are very sparse ( 1-2%
ignoring elements < 0.1% of the largest element)
and have a simple structure. The most significant
elements of the mobility matrix are the diagonal
elements and off-diagonal elements only where the
th mode is connected to the j th mode by field

shift. The diffusion matrix is strongly diagonal and
has significant but small off-diagonal elements
only where the th mode is connected to the j th
mode by scattering.

6OO

"13 ..,400

267’’’ 133
267

400
Output modes Input modes

FIGURE la Mobility matrix for Si, non-parabolic spherical
bands, 20 modes in longitudinal Px (20 positive and 20 negative
fluxes) and 20 modes in transverse IPtl, (111) -1 x 104 V/cm.

70

60-

50

40,

30,,

2O

10

0,,

-10, ...400

Output modes 400 Input modes

FIGURE lb Diffusion matrix for Si, non-parabolic spherical
bands, 20 modes in longitudinal Px (20 positive and 20 negative
fluxes) and 20 modes in transverse Pt, 111 x 104 V/cm.

In order to test the formulation, we used the
above matrices to simulate electron transport in
bulk Si with (111) electric fields. The solution in
bulk is simple because there are no spatial
gradients in Eqs. (2) and (3). Substituting the
expressions for [c], [/3] and [#] from Eqs. (7), (8)
and (6) respectively, we get

[--[11] [12]] [[]fl][21] [22] [01

which could also have been obtained directly from
the differential flux Eq. (1).
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The solution for the above Eq. (9) is a straight-
forward solution to a null-space problem (using
svd factorisation in MATLAB) and it gives us the
complete bulk carrier distribution function for any
field 8x. Some calculated bulk distributions for

(111) electric fields are shown in Figure 2. Taking
the average of the mobility and the diffusion
matrices over the carrier distributions so obtained

0.5

0.4

-8 -6 -2
in )o-m/s 4 6 8

Px x 10

FIGURE 2a Bulk carrier distribution for (111) -1102 V/cm
in Si.
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0.5
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0.2

-.6 -4 -2 )0 2 4
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x 10

FIGURE 2b Bulk carrier distribution for (111) 105
V/cm in Si.

in the bulk,

(t1’)
iniZ Idij nj, (10)

j

(D)
ini ZZDijnj, (ll)

j

we recover the values of macroscopic mobility and
diffusion coefficients.

Plots of the results are shown in Figure (3), and
we see that macroscopic mobility, diffusion coeffi-
cients and electron temperature so obtained have
the expected behaviour with electric field. The low-
field mobility is 30% too low because of the
assumed uniform intra-mode distribution. High-
field results which do not suffer from this
constraint are therefore more accurate-e.g.
9.915 106 cm/s at 105 V/cm. Note that the
field dependence of (/z) and (D) is a consequence
of the field dependence of the distribution function
in this approach.

4 DISCUSSION

To illustrate how the equations would be solved
under spatially varying conditions, we present a

simple linear scheme using finite differences. By

1111111

]101 10 10 10 10
<111> Field (V/cm)

FIGURE 3a Macroscopic bulk mobility versus (111) electric
field in Si.
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FIGURE 3b Macroscopic bulk diffusion coefficient and
electron temperature (calculated from D/# kBTe/e) versus
(111) electric field in Si.

discretising df(x)/dx on a uniform grid of size h,
we obtain

[a(i)]aT(i)+ [/3(i)](i),

(12)

system whose solution is the position dependent
carrier distribution function. However, the Schar-
fetter-Gummel method is normally the preferred
scheme for discretising the conventional drift-
diffusion equation because it is stable when the
potential drop between adjacent nodes on a grid
spacing h is greater than 2kBTe/e. A corresponding
result must be developed for the multi-mode
semiconductor equations.
With regard to future applications, it is clear to

see that finding the transitions rates for the fluxes
in two (and three) spatial dimensions will give
similar differential flux equations for two (and
three) spatial dimensions. Therefore the multi-
mode method will still hold in the most general
case of transport. As a final note, we should point
out that the multi-mode drift-diffusion/continuity
equation formulation is formally equivalent to the
differential flux equations, Eq. (1). These equa-
tions could, alternatively be integrated across the
device in order to solve for carrier transport. The
numerical advantages of one form over the other
are not clear yet.

5 SUMMARY

In the simplest case, we could discretise the current
equations using Eq. (2) and finite differences as
follows

37(0- e[#(i)] (V(i + 1)2h- V(i-1))if(i)
+e[D(i)]l-_(ff(i+ 1)- if(i-1)).

zn

The result is a tridiagonal matrix form for the
carrier distribution function across the device
(i from to N)

[(i 1)] ff(i 1) + [D(i)] if(i)

+ [b/(i + 1)] ff(i + 1) 0,
(13)

where the elements of the tridiagonal matrix are
now not scalars but MM matrices and the
variables are M vectors. This is a large linear

To summarise, we have presented a 1-D spatial
multi-mode drift-diffusion equation as reformula-
tion of the 1-D spatial Boltzmann equation in a
discrete 3-D momentum space. Although, the
numerical aspects in this paper were not optimised
for the best accuracy, the multi-mode drift-
diffusion equation was solved in the bulk for the
carrier distribution function and all the macro-
scopic properties that are incorporated as
phenomenological models in conventional drift-
diffusion were shown to fall out as a natural
consequence of solving the multi-mode drift-
diffusion.
The potential of this method lies in its close

connection to conventional drift-diffusion-nota-
bly the equivalence of a one-mode case to
conventional drift-diffusion, easy reduction to
macroscopic quantities and similarity in solution
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techniques. The key issue now is to formulate the
problem for solution on a general 2-D spatial grid.
Both deterministic and stochastic solution techni-
ques for solving the resulting equations should be
examined. From the results so far, the multi-mode
drift-diffusion formulation of the Boltzmann
equation promises to be a powerful approach
and may overcome some of the limitations of the
scattering matrix approach.
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