909 research outputs found

    Radio Galaxy Zoo: Cosmological Alignment of Radio Sources

    Get PDF
    We study the mutual alignment of radio sources within two surveys, FIRST and TGSS. This is done by producing two position angle catalogues containing the preferential directions of respectively 3005930\,059 and 1167411\,674 extended sources distributed over more than 70007\,000 and 1700017\,000 square degrees. The identification of the sources in the FIRST sample was performed in advance by volunteers of the Radio Galaxy Zoo project, while for the TGSS sample it is the result of an automated process presented here. After taking into account systematic effects, marginal evidence of a local alignment on scales smaller than 2.5deg2.5\deg is found in the FIRST sample. The probability of this happening by chance is found to be less than 22 per cent. Further study suggests that on scales up to 1.5deg1.5\deg the alignment is maximal. For one third of the sources, the Radio Galaxy Zoo volunteers identified an optical counterpart. Assuming a flat Λ\LambdaCDM cosmology with Ωm=0.31,ΩΛ=0.69\Omega_m = 0.31, \Omega_\Lambda = 0.69, we convert the maximum angular scale on which alignment is seen into a physical scale in the range [19,38][19, 38] Mpc h701h_{70}^{-1}. This result supports recent evidence reported by Taylor and Jagannathan of radio jet alignment in the 1.41.4 deg2^2 ELAIS N1 field observed with the Giant Metrewave Radio Telescope. The TGSS sample is found to be too sparsely populated to manifest a similar signal

    A Vision for Ice Giant Exploration

    Get PDF
    From Voyager to a Vision for 2050: NASA and ESA have just completed a study of candidate missionsto Uranus and Neptune, the so-called ice giant planets. It is a Pre-Decadal Survey Study, meant to inform the next Planetary Science Decadal Survey about opportunities for missions launching in the 2020's and early 2030's. There have been no space flight missions to the ice giants since the Voyager 2 flybys of Uranus in 1986 and Neptune in 1989. This paper presents some conclusions of that study (hereafter referred to as The Study), and how the results feed into a vision for where planetary science can be in 2050. Reaching that vision will require investments in technology andground-based science in the 2020's, flight during the 2030's along with continued technological development of both ground- and space-based capabilities, and data analysis and additional flights in the 2040's. We first discuss why exploring the ice giants is important. We then summarize the science objectives identified by The Study, and our vision of the science goals for 2050. We then review some of the technologies needed to make this vision a reality

    Radio science measurements of atmospheric refractivity with Mars Global Surveyor

    Get PDF
    Radio occultation experiments with Mars Global Surveyor measure the refractive index of the Martian atmosphere from the surface to ~250 km in geopotential height. Refractivity is proportional to neutral density at low altitudes and electron density at high altitudes, with a transition at ~75 km. We use weighted least squares to decompose zonal refractivity variations into amplitudes and phases for observed wave numbers k=1-4 over the entire altitude range and use the results to analyze atmospheric structure and dynamics. The data set consists of 147 refractivity profiles acquired in December 2000 at summer solstice in the Martian northern hemisphere. The measurements are at an essentially fixed local time (sunrise) and at latitudes from 67deg to 70degN. Thermal tides appear to be responsible for much of the observed ionospheric structure from 80 to 220 km. Tides modulate the neutral density, which in turn, controls the height at which the ionosphere forms. The resulting longitude-dependent vertical displacement of the ionosphere generates distinctive structure in the fitted amplitudes, particularly at k=3, within plusmn50 km of the electron density peak height. Our k=3 observations are consistent with an eastward propagating semidiurnal tide with zonal wave number 1. Relative to previous results, our analysis extends the characterization of tides to altitudes well above and below the electron density peak. In the neutral atmosphere, refractivity variations from the surface to 50 km appear to arise from stationary Rossby waves. Upon examining the full vertical range, stationary waves appear to dominate altitudes below ~75 km, and thermal tides dominate altitudes above this transition region

    Aerial dissemination of Clostridium difficile spores

    Get PDF
    Background: Clostridium difficile-associated diarrhoea (CDAD) is a frequently occurring healthcare-associated infection, which is responsible for significant morbidity and mortality amongst elderly patients in healthcare facilities. Environmental contamination is known to play an important contributory role in the spread of CDAD and it is suspected that contamination might be occurring as a result of aerial dissemination of C. difficile spores. However previous studies have failed to isolate C. difficile from air in hospitals. In an attempt to clarify this issue we undertook a short controlled pilot study in an elderly care ward with the aim of culturing C. difficile from the air. Methods: In a survey undertaken during February (two days) 2006 and March (two days) 2007, air samples were collected using a portable cyclone sampler and surface samples collected using contact plates in a UK hospital. Sampling took place in a six bedded elderly care bay (Study) during February 2006 and in March 2007 both the study bay and a four bedded orthopaedic bay (Control). Particulate material from the air was collected in Ringer's solution, alcohol shocked and plated out in triplicate onto Brazier's CCEY agar without egg yolk, but supplemented with 5 mg/L of lysozyme. After incubation, the identity of isolates was confirmed by standard techniques. Ribotyping and REP-PCR fingerprinting were used to further characterise isolates. Results: On both days in February 2006, C. difficile was cultured from the air with 23 samples yielding the bacterium (mean counts 53 – 426 cfu/m3 of air). One representative isolate from each of these was characterized further. Of the 23 isolates, 22 were ribotype 001 and were indistinguishable on REP-PCR typing. C. difficile was not cultured from the air or surfaces of either hospital bay during the two days in March 2007. Conclusion: This pilot study produced clear evidence of sporadic aerial dissemination of spores of a clone of C. difficile, a finding which may help to explain why CDAD is so persistent within hospitals and difficult to eradicate. Although preliminary, the findings reinforce concerns that current C. difficile control measures may be inadequate and suggest that improved ward ventilation may help to reduce the spread of CDAD in healthcare facilities

    Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 J. K. Banfield, H. Andernach, A. D. Kapińska, L. Rudnick, M. J. Hardcastle, G. Cotter, S. Vaughan, T. W. Jones, I. Heywood, J. D. Wing, O. I. Wong, T. Matorny, I. A. Terentev, Á. R. López-Sánchez, R. P. Norris, N. Seymour, S. S. Shabala, and K. W. Willett. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. The version of record is available on line at doi: 10.1093/mnras/stw1067We have discovered a previously unreported poor cluster of galaxies (RGZ-CL J0823.2+0333) through an unusual giant wide-angle tail radio galaxy found in the Radio Galaxy Zoo project. We obtained a spectroscopic redshift of z=0.0897z=0.0897 for the E0-type host galaxy, 2MASX J08231289+0333016, leading to Mr=22.6_r = -22.6 and a 1.41.4\,GHz radio luminosity density of L1.4=5.5×1024L_{\rm 1.4} = 5.5\times10^{24} W Hz1^{-1}. These radio and optical luminosities are typical for wide-angle tailed radio galaxies near the borderline between Fanaroff-Riley (FR) classes I and II. The projected largest angular size of 8\approx8\,arcmin corresponds to 800800\,kpc and the full length of the source along the curved jets/trails is 1.11.1\,Mpc in projection. X-ray data from the XMM-Newton archive yield an upper limit on the X-ray luminosity of the thermal emission surrounding RGZ J082312.9+033301,at 1.22.6×10431.2-2.6\times10^{43} erg s1^{-1} for assumed intra-cluster medium temperatures of 1.05.01.0-5.0\,keV. Our analysis of the environment surrounding RGZ J082312.9+033301 indicates that RGZ J082312.9+033301 lies within a poor cluster. The observed radio morphology suggests that (a) the host galaxy is moving at a significant velocity with respect to an ambient medium like that of at least a poor cluster, and that (b) the source may have had two ignition events of the active galactic nucleus with 10710^7\,yrs in between. This reinforces the idea that an association between RGZ J082312.9+033301, and the newly discovered poor cluster exists.Peer reviewe
    corecore