25 research outputs found

    Oviposition by Spodoptera exigua on Nicotiana attenuata primes induced plant defence against larval herbivory

    Get PDF
    Plants exhibit multifarious defence traits against herbivory that are constitutively expressed or induced upon attack. Insect egg deposition often precedes impending larval attack, and several plants can increase their resistance against larvae after experiencing the oviposition by an herbivore. The nature of such oviposition-mediated resistance remains unknown, and here we aim to determine plant traits that explain it. We test whether oviposition on a host plant can induce plant defence responses or enhance (prime) the induction of defence traits in response to larval herbivory. We exposed Nicotiana attenuata plants to oviposition by moths of a generalist herbivore, Spodoptera exigua. Its larvae suffered higher mortality, retarded development and inflicted less feeding damage on oviposition-experienced than on oviposition-unexperienced plants. While oviposition alone did not induce any of the examined defence traits, oviposited plants exhibited a stronger inducibility of known defence traits, i.e. caffeoylputrescine (CP) and trypsin protease inhibitors (TPIs). We found no effects of oviposition on phytohormone levels, but on the feeding-inducible accumulation of the transcription factor NaMyb8 that is governing biosynthesis of phenylpropanoid–polyamine conjugates, including CP. Comparison of larval performance on wild-type plants, CP- deficient plants (silenced NaMyb8 gene), and TPI-deficient plants (silenced NaPI gene) revealed that priming of plant resistance to larvae by prior oviposition required NaMyb8-mediated defence traits. Our results show that plants can use insect egg deposition as a warning signal to prime their feeding-induced defence

    Priming of anti-herbivore defence in Nicotiana attenuata by insect oviposition: herbivore-specific effects

    Get PDF
    Oviposition by Spodoptera exigua on Nicotiana attenuata primes plant defence against its larvae that consequently suffer reduced performance. To reveal whether this is a general response of tobacco to insect oviposition or species-specific, we investigated whether also Manduca sexta oviposition primes N. attenuata's anti-herbivore defence. The plant response to M. sexta and S. exigua oviposition overlapped in the egg-primed feeding-induced production of the phenylpropanoid caffeoylputrescine. While M. sexta larvae were unaffected in their performance, they showed a novel response to the oviposition-mediated plant changes: a reduced antimicrobial activity in their haemolymph. In a cross-resistance experiment, S. exigua larvae suffered reduced performance on M. sexta-oviposited plants like they did on S. exigua- oviposited plants. The M. sexta oviposition-mediated plant effects on the S. exigua larval performance and on M. sexta larval immunity required expression of the NaMyb8 transcription factor that is governing biosynthesis of phenylpropanoids such as caffeoylputrescine. Thus, NaMyb8-dependent defence traits mediate the effects that oviposition by both lepidopteran species exerts on the plant's anti-herbivore defence. These results suggest that oviposition by lepidopteran species on N. attenuata leaves may generally prime the feeding-induced production of certain plant defence compounds but that different herbivore species show different susceptibility to egg-primed plant effects

    Moth oviposition shapes the species-specific transcriptional and phytohormonal response of Nicotiana attenuata to larval feeding

    Get PDF
    Oviposition by lepidopteran herbivores on Nicotiana attenuata primes plant defence responses that are induced by the feeding larvae. While oviposition by both the generalist Spodoptera exigua and the specialist Manduca sexta primes the production of defensive phenylpropanoids, their larvae are differentially affected. We investigate here the impact of prior oviposition on the transcriptome and phytohormone levels of plants that were later attacked by larvae to find regulatory signals of this priming. In a full-factorial design, we evaluated the effects of oviposition and herbivory by both species. Oviposition alone had only subtle effects at the transcriptional level. Laval feeding alone induced species-specific plant responses. Larvae of the generalist regulated phytohormones and gene expression stronger than larvae of the specialist. A day after larvae started to feed, we detected no significant alterations of the plant’s response to larval feeding due to prior oviposition by conspecific moths. Yet, oviposition by each of the species profoundly influenced the plant’s transcriptional and phytohormonal response to feeding larvae of the other species. Remarkably, the species-specific plant responses to larval feeding shifted towards the response normally elicited by larvae of the ovipositing species. Thus, plants may already recognise an insect’s identity upon its oviposition

    A push-button: Spodoptera exigua

    No full text

    Insect egg deposition induces indirect defense and epicuticular wax changes in Arabidopsis thaliana

    No full text
    Egg deposition by the Large Cabbage White butterfly Pieris brassicae on Brussels sprouts plants induces indirect defense by changing the leaf surface, which arrests the egg parasitoid Trichogramma brassicae. Previous studies revealed that this indirect defense response is elicited by benzyl cyanide (BC), which is present in the female accessory reproductive gland (ARG) secretion and is released to the leaf during egg deposition. Here, we aimed (1) to elucidate whether P. brassicae eggs induce parasitoid-arresting leaf surface changes in another Brassicacean plant, i.e., Arabidopsis thaliana, and, if so, (2) to chemically characterize the egg-induced leaf surface changes. Egg deposition by P. brassicae on A. thaliana leaves had similar effects to egg deposition on Brussels sprouts with respect to the following: (a) Egg deposition induced leaf surface changes that arrested T. brassicae egg parasitoids. (b) Application of ARG secretion of mated female butterflies or of BC to leaves had the same inductive effects as egg deposition. Based on these results, we conducted GC-MS analysis of leaf surface compounds from egg- or ARG-induced A. thaliana leaves. We found significant quantitative differences in epicuticular waxes compared to control leaves. A discriminant analysis separated surface extracts of egg-laden, ARG-treated, untreated control and Ringer solution-treated control leaves according to their quantitative chemical composition. Quantities of the fatty acid tetratriacontanoic acid (C34) were significantly higher in extracts of leaf surfaces arresting the parasitoids (egg-laden or ARG-treated) than in respective controls. In contrast, the level of tetracosanoic acid (C24) was lower in extracts of egg-laden leaves compared to controls. Our study shows that insect egg deposition on a plant can significantly affect the quantitative leaf epicuticular wax composition. The ecological relevance of this finding is discussed with respect to its impact on the behavior of egg parasitoids
    corecore