136 research outputs found

    From Cellular Characteristics to Disease Diagnosis: Uncovering Phenotypes with Supercells

    Get PDF
    Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of ‘‘supercell statistics’’, a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behc¸et’s disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behc¸et’s disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques.Fil: Candia, Julian Marcelo. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; ArgentinaFil: Maunu, Ryan. University of Maryland; Estados UnidosFil: Driscoll, Meghan. University of Maryland; Estados UnidosFil: Biancotto, Angélique. National Institutes of Health; Estados UnidosFil: Dagur, Pradeep. National Institutes of Health; Estados UnidosFil: McCoy Jr., J Philip. National Institutes of Health; Estados UnidosFil: Nida Sen, H.. National Institutes of Health; Estados UnidosFil: Wei, Lai. National Institutes of Health; Estados UnidosFil: Maritan, Amos. Università di Padova; ItaliaFil: Cao, Kan. University of Maryland; Estados UnidosFil: Nussenblatt, Robert B. National Institutes of Health; Estados UnidosFil: Banavar, Jayanth R.. University of Maryland; Estados UnidosFil: Losert, Wolfgang. University of Maryland; Estados Unido

    Towards a unified descriptive theory for spatial ecology: predicting biodiversity patterns across spatial scales

    Get PDF
    A key challenge for both ecological researchers and biodiversity managers is the measurement and prediction of species richness across spatial scales. Typically, biodiversity is assessed at fine scales (e.g. in quadrats or transects) for practical reasons, but often we are interested in coarser-scale (field, regional, global) diversity issues. Moreover, the pressures affecting biodiversity patterns are often scale specific, making multiscale assessment a crucial methodological priority. As species richness is not additive, it is difficult to translate from the scale of measurement to the scale(s) of interest. A number of methods have been proposed to tackle this problem, but most are too model specific or too rigid to allow general application. Here, we present a general framework (and a specific implementation of it) that allows such scale translations to be performed. Building on the intrinsic relationships among patterns of species richness, abundance and spatial turnover, we introduce a framework that links and predicts the profile of the species-area relationship and the species-abundance distributions across scales when a limited number of fine-scale scattered samples are available. Using the correlation in species' abundances between pairs of samples as a function of the distance between them, we are able to link the effects of aggregation, similarity decay, species richness and species abundances across scales. Our approach allows one to draw inferences about biodiversity scaling under very general assumptions pertaining to the nature of interactions, the geographical distributions of individuals and ecological processes. We demonstrate the accuracy of our predictions using data from two well-studied forest stands and also demonstrate the potential value of such methods by examining the effects of management on farmland insects across scales. The framework has important applications to biodiversity research and conservation practice

    Co-evolution of density and topology in a simple model of city formation

    Full text link
    We study the influence that population density and the road network have on each others' growth and evolution. We use a simple model of formation and evolution of city roads which reproduces the most important empirical features of street networks in cities. Within this framework, we explicitely introduce the topology of the road network and analyze how it evolves and interact with the evolution of population density. We show that accessibility issues -pushing individuals to get closer to high centrality nodes- lead to high density regions and the appearance of densely populated centers. In particular, this model reproduces the empirical fact that the density profile decreases exponentially from a core district. In this simplified model, the size of the core district depends on the relative importance of transportation and rent costs.Comment: 13 pages, 13 figure

    Error and attack tolerance of complex networks

    Full text link
    Many complex systems, such as communication networks, display a surprising degree of robustness: while key components regularly malfunction, local failures rarely lead to the loss of the global information-carrying ability of the network. The stability of these complex systems is often attributed to the redundant wiring of the functional web defined by the systems' components. In this paper we demonstrate that error tolerance is not shared by all redundant systems, but it is displayed only by a class of inhomogeneously wired networks, called scale-free networks. We find that scale-free networks, describing a number of systems, such as the World Wide Web, Internet, social networks or a cell, display an unexpected degree of robustness, the ability of their nodes to communicate being unaffected by even unrealistically high failure rates. However, error tolerance comes at a high price: these networks are extremely vulnerable to attacks, i.e. to the selection and removal of a few nodes that play the most important role in assuring the network's connectivity.Comment: 14 pages, 4 figures, Late

    A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation

    Get PDF
    Nanoparticles introduced in living cells are capable of strongly promoting the aggregation of peptides and proteins. We use here molecular dynamics simulations to characterise in detail the process by which nanoparticle surfaces catalyse the self- assembly of peptides into fibrillar structures. The simulation of a system of hundreds of peptides over the millisecond timescale enables us to show that the mechanism of aggregation involves a first phase in which small structurally disordered oligomers assemble onto the nanoparticle and a second phase in which they evolve into highly ordered beta-sheets as their size increases

    From cellular characteristics to disease diagnosis: uncovering phenotypes with supercells

    Get PDF
    Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of "supercell statistics", a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behçet's disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behçet's disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques.Instituto de Física de Líquidos y Sistemas Biológico

    Network Physiology reveals relations between network topology and physiological function

    Full text link
    The human organism is an integrated network where complex physiologic systems, each with its own regulatory mechanisms, continuously interact, and where failure of one system can trigger a breakdown of the entire network. Identifying and quantifying dynamical networks of diverse systems with different types of interactions is a challenge. Here, we develop a framework to probe interactions among diverse systems, and we identify a physiologic network. We find that each physiologic state is characterized by a specific network structure, demonstrating a robust interplay between network topology and function. Across physiologic states the network undergoes topological transitions associated with fast reorganization of physiologic interactions on time scales of a few minutes, indicating high network flexibility in response to perturbations. The proposed system-wide integrative approach may facilitate the development of a new field, Network Physiology.Comment: 12 pages, 9 figure

    Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates

    Get PDF
    The presence of oligomeric aggregates, which is often observed during the process of amyloid formation, has recently attracted much attention since it has been associated with neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. We provide a description of a sequence-indepedent mechanism by which polypeptide chains aggregate by forming metastable oligomeric intermediate states prior to converting into fibrillar structures. Our results illustrate how the formation of ordered arrays of hydrogen bonds drives the formation of beta-sheets within the disordered oligomeric aggregates that form early under the effect of hydrophobic forces. Initially individual beta-sheets form with random orientations, which subsequently tend to align into protofilaments as their lengths increases. Our results suggest that amyloid aggregation represents an example of the Ostwald step rule of first order phase transitions by showing that ordered cross-beta structures emerge preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure

    On the origin of the Boson peak in globular proteins

    Full text link
    We study the Boson Peak phenomenology experimentally observed in globular proteins by means of elastic network models. These models are suitable for an analytic treatment in the framework of Euclidean Random Matrix theory, whose predictions can be numerically tested on real proteins structures. We find that the emergence of the Boson Peak is strictly related to an intrinsic mechanical instability of the protein, in close similarity to what is thought to happen in glasses. The biological implications of this conclusion are also discussed by focusing on a representative case study.Comment: Proceedings of the X International Workshop on Disordered Systems, Molveno (2006

    Sheldon Spectrum and the Plankton Paradox: Two Sides of the Same Coin : A trait-based plankton size-spectrum model

    Get PDF
    The Sheldon spectrum describes a remarkable regularity in aquatic ecosystems: the biomass density as a function of logarithmic body mass is approximately constant over many orders of magnitude. While size-spectrum models have explained this phenomenon for assemblages of multicellular organisms, this paper introduces a species-resolved size-spectrum model to explain the phenomenon in unicellular plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton necessarily consists of a large number of coexisting species covering a wide range of characteristic sizes. The coexistence of many phytoplankton species feeding on a small number of resources is known as the Paradox of the Plankton. Our model resolves the paradox by showing that coexistence is facilitated by the allometric scaling of four physiological rates. Two of the allometries have empirical support, the remaining two emerge from predator-prey interactions exactly when the abundances follow a Sheldon spectrum. Our plankton model is a scale-invariant trait-based size-spectrum model: it describes the abundance of phyto- and zooplankton cells as a function of both size and species trait (the maximal size before cell division). It incorporates growth due to resource consumption and predation on smaller cells, death due to predation, and a flexible cell division process. We give analytic solutions at steady state for both the within-species size distributions and the relative abundances across species
    • …
    corecore