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Abstract

Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose
difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from
multiparameter single-cell measurements, which is based on the concept of ‘‘supercell statistics’’, a single-cell-based
averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff
between the number of single cells averaged and the number of measurements needed to capture phenotypic differences
between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We
apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using
images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behçet’s
disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken
over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice.
In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behçet’s disease and
sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved.
To obtain this clear phenotypic signature, about one hundred CD8+ T cells need to be measured. Although the molecular
markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out
that CD8+ T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach
proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell
technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing
techniques.
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Introduction

In the life sciences, there is now a wealth of quantitative

information from simultaneous measurements on many proteins

and genes, from small tissue samples down to a single cell at a time

[1–6]. Likewise, bioimaging is following a similar trend through

multicolor fluorescent imaging and the emerging ability to carry

out spatially resolved vibrational spectroscopy of living cells in

close to real-time [7,8]. These groundbreaking technologies have

resulted in a plethora of information for single cells, which can be

represented as points in a high-dimensional space. Here we show

how one can tease out the essential information from such high-

dimensional data in order to diagnose human diseases and

understand their molecular origins.

Our approach tackles two interlinked challenges inherent to high-

dimensional, single-cell information. First, single-cell measurements

exhibit vast heterogeneity in the behavior of individual cells: even a

simple bell-shaped distribution can contain subpopulations enriched

for biologically distinct functions. For instance, subpopulations of

clonally derived hematopoietic progenitor cells with low or high

expression of the stem cell marker Sca-1 were observed to be in

dramatically different transcriptional states and to give rise to

different blood cell lineages [9]. Second, cell phenotypes are

emergent products of multiple molecular actions: the phenotype of a

tissue or organism often requires not only multiple cells, but also

multiple attributes at the cellular level, which makes bridging scales

from molecular and cellular level information to disease diagnosis a

challenging, oftentimes elusive goal [10].
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Here we present a new approach to analyze high-dimensional

single-cell information, and apply it to two representative datasets.

We address the diagnosis of progeria, a premature aging disorder

[11], where single-cell data are obtained by an automated nuclear

shape analysis from hundreds of healthy and diseased cells. We

also develop a multiparameter phenotype in order to distinguish

two sight threatening non-infectious uveitides, the ocular mani-

festations of Behçet’s disease and sarcoidosis, based on multicolor

flow cytometry information on tens of proteins from fresh blood

patient samples. Our emphasis is to assess the optimal tradeoff

between the number of single cells averaged and the number of

measurements needed to capture phenotypic difference. The

number of available cells may be a key limiting factor when target

cell subpopulations are extremely small (e.g. hematopoietic stem

cells from bone marrow or blood samples) or when the

experimental techniques are not easily scalable (e.g. single-cell

imaging and single-cell gene expression).

In the next Section, we describe some common approaches to

analyze multidimensional single-cell datasets, we show their

shortcomings due to cell heterogeneity and the inherent multidi-

mensional nature implied in a complex phenotype, and we apply

our approach to the two specific cases mentioned above. In the

following Section, we provide a summary and a discussion of our

findings.

Results

A commonly used method to visualize and analyze multidi-

mensional single cell information is through sequential selection of

subtypes of cells based on simple thresholds, applied to one or two

parameters at a time [12]. This procedure is generally represented

as a sequence of two-dimensional plots, where one attribute is

plotted against another one. This method works extremely well

when simple thresholds for just a few parameters lead to reliable

phenotypes. However, for complex diseases such as Behçet’s and

sarcoidosis, even the best choice of parameters is not enough to

identify a phenotype. A representative example is shown in

Fig. 1A(i): CD8+ T cells have very similar combinations of IL22

and CD3 levels in both Behçet’s disease and sarcoidosis, even

though – as we will show below – these parameters play a key role

in distinguishing between the two diseases. Similarly, highly

overlapping populations are observed for other cell types we

investigated (e.g. CD4+ T cells) and other pairs of markers studied.

This indicates that the distinction between Behçet’s disease and

sarcoidosis can only be discerned using a combination of more

than two parameters, and thus is difficult to visualize and detect

with established approaches.

Going beyond two parameters, some mathematical tools are

able to reduce the dimensionality of high-dimensional data

[13,14]. Singular value decomposition is a simple, yet powerful

technique for generating low dimensional representations [13].

However, the optimal axes selected by such a method are not

designed to distinguish between health and disease, or help

diagnose the disease. This is evident in Fig. 1A(ii), where the two

top eigenmodes from a singular-value decomposition analysis of

16-dimensional data are plotted for the same CD8+ T cell

subpopulation, showing again a large overlap between the two

diseases.

Even in cases where a single parameter can be established as a

suitable phenotype, cell-to-cell heterogeneity presents a challenge.

For example, in Hutchinson-Gilford progeria syndrome (HGPS), a

rare genetic disease of accelerated aging, the number of ‘‘blebs’’ or

localized protrusions visible in a cell’s nucleus is an established

cellular marker of HGPS [15]. However, that does not imply that

a single cell showing blebs indicates HGPS. Instead, as shown by

Fig. 1B(i)–(iv), blebbed and non-blebbed nuclei are observed both

within healthy and diseased cell lines. On average, nevertheless,

blebbing is a reliable phenotype, as illustrated in Fig. 1B(v)–(vi).

This raises the question: can one simply measure other aspects of

the nuclear shape with additional metrics to establish a disease

phenotype from a single cell, or does cell heterogeneity require us

to investigate the properties of cell ensembles for a reliable

diagnosis? The tradeoff between multidimensional measurements

and the number of cells needed to achieve a desired confidence

level of prediction certainly requires an unbiased, fully quantita-

tive, and mathematically robust method.

Here we introduce and apply an approach to develop a disease

phenotype from multiparameter single-cell measurements. Our

approach uses simple machine learning methods to determine

what combination of parameters can serve as an indicator of

disease, and how many parameters are needed to diagnose a

disease. While machine learning of disease diagnostics is not new,

it often fails when applied at the single-cell level due to the

heterogeneity of cells. It also fails when average quantities are

measured if the number of patients is not large enough for a

machine learning approach. The simple additional step of

averaging over a small number of cells - here tens to hundreds

of cells – and varying that number allows us to optimize our ability

to detect a disease phenotype. This procedure smoothes out single

cell heterogeneity and, at the same time, minimizes the loss of

information due to averaging. For machine learning purposes,

each patient is still represented by a point cloud in parameter

space, but now each point represents a group of cells, rather than

an individual cell.

Recently, several groups have developed computational meth-

ods for identifying cell populations in multidimensional flow

cytometry data. Their goals are two-fold: on the one hand, to

determine whether automated algorithms can reproduce expert

manual gating; on the other hand, to determine whether analysis

pipelines can identify characteristics that correlate with external

variables such as clinical outcome. In the latter case, flow

cytometry data is transformed into class-labeled vectors in instance

space by a variety of methods such as binning of 2D and 3D

measurement histograms, Gaussian mixtures, 1D and sequential

Author Summary

The behavior of organisms is based on the concerted
action occurring on an astonishing range of scales from
the molecular to the organismal level. Molecular properties
control the function of a cell, while cell ensembles form
tissues and organs, which work together as an organism. In
order to understand and characterize the molecular nature
of the emergent properties of a cell, it is essential that
multiple components of the cell are measured simulta-
neously in the same cell. Similarly, multiple cells must be
measured in order to understand health and disease in the
organism. In this work, we develop an approach that is
able to determine how many cells, how many measure-
ments per cell, and which measurements are needed to
reliably diagnose disease. We apply this method to two
different problems: the diagnosis of a premature aging
disorder using images of cell nuclei, and the distinction
between two similar autoimmune eye diseases using
stained cells from patients’ blood samples. Our findings
shed new light on the role of specific kinds of immune
system cells in systemic inflammatory diseases and may
lead to improved diagnosis and treatment.
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gating schemes, and cell clustering using k-means and other high-

dimensional clustering techniques [16–23]. A detailed description

and comparative assessment of the performance of different

approaches has been recently reported [24]. Within this context, it

is important to point out that the method proposed in our work

addresses the problem of phenotypic classification when single cells

are highly heterogeneous and when the number of cells available

may be rather small (just a few tens or hundreds, as opposed to

typical flow cytometry experiments in which the number of

measured cells is one or several orders of magnitude larger). We

will demonstrate that our method is generally applicable to

different kinds of multidimensional single-cell data and one of our

examples is on flow- cytometry-based phenotypes. However, the

key contribution is the development of a framework that provides

a quantitative assessment of the critical sample size and number of

simultaneous single-cell measurements needed to identify a

phenotype with strong predictive power. State-of-the-art single-

cell genomics and single-cell imaging technologies are examples in

which the number of measured single cells is critically small, and

where flow cytometry data analysis methods that rely on high-

dimensional clustering procedures, Gaussian mixture approxima-

tions, etc may be expected to fail.

We will tackle the tradeoff between the number of parameters

and the number of cells needed first on the example of HGPS - the

mathematics are the same for any multidimensional single-cell

dataset. A complete approach would entail the study of the

distribution of the individual measurement vectors. Our results

demonstrate, a posteriori, that simple averages suffice for carrying

out the calculations successfully. We define a ‘‘supercell of size N’’

as the average of the individual measurement vectors of N

randomly selected cells. By repeatedly taking different random

subsets of N cells from the original datasets, we build ‘‘supercell

samples’’ and we are thus able to compute ‘‘supercell statistics’’.

This procedure is illustrated in Fig. 2A(i)–(ii), where we select one

shape parameter (namely, the number of invaginations of the

nuclear boundary) and compute the probability density distribu-

tions for healthy and diseased cell lines. In Fig. 2A(i), the

distributions for single cells are highly overlapping, reflecting the

fact that, based on individual cells, one is not able to distinguish

healthy cells from diseased ones (Dataset S1). After applying the

cell averaging procedure (using N = 30 randomly selected cells to

generate each ‘‘supercell’’), we obtain distributions without any

significant overlap between healthy and diseased samples, as

shown by Fig. 2A(ii). The supercell size N = 30 has been chosen

Figure 1. Identifying diseases from heterogeneous single cells. A. Using standard methods of flow cytometry analysis, diseases such as
sarcoidosis and Behçet’s cannot be separated. (i) 2D scatter plot using markers CD3 and IL22. (ii) 2D Singular-Value decomposition analysis. Figs. A(i)–
(ii) show CD8+ T cell subsamples from a cohort of 7 sarcoidosis patients and 6 patients diagnosed with Behçet’s disease, but similar overlaps are also
observed for other cell types and marker pairs. B. Cell ensembles carry the signatures of health and disease, despite heterogeneity at the single-cell
level. (i)–(iv) Nuclear shapes of healthy and diseased (HGPS) cells can be classified as either blebbed or non-blebbed. Scale bar: 10 m. Note that it is
impossible to tell whether a person has the disease or not based on the analysis of a single cell. (v) Classifying nuclei as blebbed (red) or non-blebbed
(black) based on just one shape parameter, which is automatically determined via custom image analysis software. Most cells in the ensemble of 30
randomly selected nuclei from a diseased cell line are labeled as blebbed. Scale bar: 50 m. (vi) Conversely, analyzing nuclei from a healthy cell line,
most cells are labeled as non-blebbed.
doi:10.1371/journal.pcbi.1003215.g001
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because it represents the smallest size that provides a full

separation between healthy and diseased samples, regardless of

the number of parameters used (see discussion below).

The removal of distribution overlaps is a manifestation of the

central limit theorem (CLT) of probability theory [25–27]. The

CLT states that, given a set of n independent random variables

associated with arbitrary probability distributions with finite mean

mi and variance si
2 (for i = 1,2,…,n), their average is a random

variable whose asymptotic cumulative distribution function

approaches a normal distribution with mean m=gmi/n and

variance s2 = (gsi
2/n)/n. As a consequence, distributions of

supercells of size N are expected to become narrower by a factor of

,1/!N. For instance, comparing Fig. 2A(i) with Fig. 2A(ii), we

observe that the width of the latter is approximately smaller by a

factor of ,1/!30<0.2. Another consequence of the CLT is that

the shape of supercell distributions becomes closer to Gaussian as

N is increased. It should be pointed out that the supercell

framework does not rely on a priori assumptions regarding the

shape of the measurement distributions. On the contrary, it

incorporates all features of the original distributions, thus naturally

dealing with issues such as skewed distributions with regions that

could be ambiguously attributed to outliers or to poorly resolved

subpopulations. However, if the measurement distributions are

distinctly multimodal due to well-defined cell subpopulations, then

the ability to predict reliable phenotypes might be compromised.

In such a scenario, robust phenotyping might first require the

identification of different cell subpopulations followed by the

application of the supercell framework separately to each of them.

This procedure is discussed below in the context of distinguishing

healthy individuals from patients with two non-infectious uveitides

by using either all cells from peripheral blood samples, or different

T cell subpopulations (see Fig. 3).

After cell averaging, machine learning allows us to learn what

combination of parameters best distinguishes healthy from

diseased cells. In order to avoid overfitting and also to obtain a

straightforward interpretation of the machine-learned parameters

in terms of the original measurements, we used a support vector

machine with a linear kernel, which is equivalent to the machine

Figure 2. Quantitative multiparameter phenotyping of healthy and HGPS cells through cell averaging (‘‘supercells’’) and machine
learning. A. Probability density distributions for one shape parameter (number of invaginations of the nuclear boundary) for healthy and diseased
cell lines: (i) single cells; (ii) supercells of size 30. The cell averaging procedure removes the overlap between healthy and diseased cell line
distributions. B. Distance from the perceptron boundary after machine learning, where positive (negative) distances correspond to the boundary side
identified with the healthy (diseased) class: (i) single cells; (ii) supercells of size 30. Each cell line is shown separately along the horizontal axis. C. (i)
Perceptron amplitudes: components of the vector normal to the classification hyperplane, each one associated with one of the shape parameters
shown in the list. (ii) Fraction of cells correctly classified by the machine learning process as a function of the supercell size for a varying number of
parameters used, as indicated. The top M measures are selected from the rank-ordered list based on the absolute values of the perceptron
amplitudes.
doi:10.1371/journal.pcbi.1003215.g002
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learning method known as the perceptron [28,29]. Healthy and

HGPS nuclear shapes were characterized by 12 parameters

including eccentricity, number of invaginations, minor/major axis

length, mean and standard deviation of the curvature, and

perimeter. Moreover, the concentration of lamin A/C (measured

based on the fluorescence signals of lamin A/C) was represented

through 3 additional parameters for each nucleus. However, for

single cells, even with these 15 parameters, the distinction between

individual cells from healthy and diseased cell lines is not

learnable. Fig. 2B(i) shows the distance from each cell to the

perceptron boundary, where positive (negative) distances corre-

spond to the boundary side identified with the healthy (diseased)

class. We observe that some cells from the healthy cell lines are

classified as diseased, and vice versa. Instead, machine learning

applied to the supercell samples works with 100% accuracy, as

displayed in Fig. 2B(ii).

The questions arise, then, which and how many parameters are

needed to achieve a classification of desired accuracy, and how

many cells need to be averaged into a ‘‘supercell’’. Fig. 2C(i) shows

the perceptron amplitudes (i.e., the components of the vector

normal to the boundary hyperplane) for each of the 15

parameters. A positive sign indicates that a given parameter is

higher in healthy cells relative to diseased cells, while its absolute

value is a measure of its overall significance (relative to the other

parameters) in separating healthy cells from diseased ones.

Therefore, we can rank-order the 15 parameters from most to

least relevant according to their decreasing amplitudes (in absolute

values), and learn using just the top M parameters from the rank-

ordered list. While this rank ordering is independent of supercell

size for large supercells, it it is very different from the rank

ordering for single cells (if the single cell measurements are

strongly overlapping). Indeed, sizable fluctuations are observed in

the single-cell and small-supercell regime (up to supercells of size

,10) followed by a stable rank-order for larger supercell sizes. The

fraction of cells correctly classified by the machine learning process

as a function of the supercell size is shown in Fig. 2C(ii). The

Figure 3. Predictive power of automated phenotyping to distinguish healthy vs diseased, or sarcoidosis vs Behçet’s for different
cell types and number of markers measured. (a)–(f) A jackknife analysis of patient classification was carried out based on a sample with 100
supercells, where each supercell was obtained from averages over 500 randomly chosen cells. The percentage of patients correctly classified is shown
as green bars, the percentage of patients for which a classification is not possible (because less than 95% of supercells fall into either one of the
classes) is shown as blue bars, while the percentage of patients incorrectly classified is shown as red bars. The top 10 measures for each case are listed
to the right of each plot. Separate analyses have been carried out for all cells, CD4+ T cells and CD8+ T cells, as indicated, as well as for the two binary
classification scenarios ‘‘healthy vs diseased’’, and ‘‘sarcoidosis vs Behçet’s’’. (g) Percentage of supercells correctly classified as healthy or diseased, as a
function of the supercell size and the number of measures used, within the CD4+ T cell subpopulation. (h) Distribution of the top marker (CD27) for
supercells averaged over 500 randomly chosen CD4+ T cells. (i) Percentage of supercells correctly classified as sarcoidosis or Behçet’s disease, as a
function of the supercell size and the number of measures used, within the CD8+ T cell subpopulation. (j) Linear combination of the top 5 markers
IL22, CD3, viability, CD8 and CD62L, as a function of CD3, for supercells averaged over 500 randomly chosen CD8+ T cells.
doi:10.1371/journal.pcbi.1003215.g003
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different curves represent different numbers of parameters (M). As

expected, the classification accuracy increases with both M and the

supercell size. While a single cell is not sufficient for classification, a

single parameter (the number of invaginations) is sufficient for

correct classification of HGPS. Indeed, this is consistent with the

standard approach to assess the disease states of HGPS based on

visual analysis (i.e. the detection of ‘‘blebs’’) and indicates that the

invaginations are the most distinguishing features of blebs [30–32].

In our second example, we apply our technique first to the

simpler problem of distinguishing healthy individuals from patients

with two non-infectious uveitides, and then to the formidable

challenge of distinguishing Behçet’s disease from sarcoidosis. Recent

work has reported progress in the ability to pinpoint molecular

indicators for inflammatory immune diseases, where larger-than-

normal levels of a novel subset of effector memory CD4+ T

lymphocytes expressing the endothelial adhesion molecule CD146

have been observed in sarcoidosis, Behçet’s, and Crohn’s disease

[33]. However, while patients can be diagnosed with Behçet’s

disease or sarcoidosis based on the concurrent observation of a

number of clinical indicators, molecular signatures unique to these

diseases have not been found. Our analysis of a molecular

phenotype uses flow cytometry experiments, in which 14 molecular

markers previously reported on human CD4+ and/or CD8+ T cells

were measured for each cell; additionally, forward- (FSC) and side-

scattering (SSC) measures were also taken on each cell. Thus, a total

of 16 simultaneous measurements were performed on each cell from

patients’ peripheral blood, with about one million cells measured

per patient. From a cohort of 22 patients, 7 were diagnosed with

sarcoidosis, 6 with Behçet’s disease, 1 with retinal vasculitis, while

the remaining 8 were healthy controls. We start with large supercells

to assess whether molecular phenotyping is possible at all to

distinguish sarcoidosis and Behçet’s disease. We represent each

patient sample with 100 supercells, where each supercell was

obtained from averages over 500 randomly chosen cells. We carry

out separate analyses for the distinction between healthy and

diseased patients (Fig. 3(a)–(c)), and for the separation between the

two diseases sarcoidosis and Behçet’s (Fig. 3(d)–(f)). Furthermore, we

perform separate analyses for all cells (Dataset S2), for CD4+ T cells

(that can be isolated using standard gating procedures based on the

sequence viability2/CD3+/CD4+/CD82) (Dataset S3) and for

CD8+ T cells (similarly identified according to viability2/CD3+/

CD8+/CD42) (Dataset S4).

Because we have a larger number of patients than we did for

HGPS, we can directly assess the predictive power of our

approach to correctly diagnose a new patient. We tested the

predictive power of our learnt patterns using a standard data-

resampling method, namely the so-called jackknife procedure:

leaving out one patient at a time, one learns with the remaining

data and makes a prediction on the test patient [34]. In that way,

one can determine the percentage of correct and failed predic-

tions. Since each patient is represented by a cloud of 100

supercells, it may happen that the perceptron boundary cuts across

the test patient’s supercell cloud. We set a threshold of 95% in

order to make a prediction: e.g. if the supercell cloud is more than

95% consistent with sarcoidosis, we classify the patient as having

sarcoidosis. If the supercell cloud falls on the boundary between

diagnoses (i.e. with less that 95% of the supercells on either side of

the perceptron boundary), we leave the test patient unclassified.

Naturally, setting the prediction threshold to lower values leads to

less unclassified patients, but tends to increase the number of failed

predictions; in contrast, increasing the threshold to higher values

leads to a more conservative approach, where the number of failed

predictions is smaller at the expense of a larger number of

unclassified patients. By changing the prediction threshold values

over the range between 80% and 100%, the observed variations of

the predicted outcome were below 10% of the cohort; the method

is thus largely insensitive to the choice of the threshold parameter.

By learning using all available measures, we are able to rank-

order the importance of the measures based on the perceptron

amplitudes. The ten most important measures and corresponding

amplitudes are listed in Fig. 3(a)–(f). The percentage of patients

correctly predicted (green), unclassified (blue), and incorrectly

predicted (red) are shown as a function of the number of rank-

ordered measures used. The outcomes depend strongly on the type

of cells used: for the ‘‘healthy vs diseased’’ case, no incorrect

predictions are made using all cells and just the top two measures,

namely viability and CD197 (Fig. 3(a)). The predictions are even

stronger if using only CD4+ T cells, since the top marker (CD27) is

sufficient by itself to correctly classify all healthy patients (with high

frequency of CD4+CD27+ T cells in their peripheral blood) and all

diseased patients (with low frequency of CD4+CD27+ T cells in

their peripheral blood) in the cohort (Fig. 3(b)). In contrast, failed

predictions are seen for the case of CD8+ T cells, irrespective of

the number of measures used (Fig. 3(c)). Previous reports have

suggested that CD4+CD27+ T cells represent the majority of

natural regulatory T cells in human peripheral blood [35]. Thus,

our results indicate that patients with either Behcet’s disease or

Sarcoidosis have low frequency of peripheral natural regulatory T

cells and, therefore, potentially compromised immunoregulatory

functions during inflammatory responses.

In order to separate Behçet’s disease and sarcoidosis, predictions

based on all cells are very poor (Fig. 3(d)), better for CD4+ T cells

(Fig. 3(e)) and best for CD8+ T cells (Fig. 3(f)), for which no failed

predictions are made when five or more measures are used. This

result indicates that the top measures listed in Fig. 3(f) may be used

as molecular phenotypes that distinguish the two diseases. This is,

to the best of our knowledge, the first report pointing out that

CD8+ T cells can be used to distinguish two systemic inflammatory

diseases. Moreover, it is interesting to note that, in distinguishing

between patients with ocular inflammation and controls without it,

the CD4 marker was an important feature, while for distinguishing

between the ocular manifestations of two systemic disorders, the

CD8 cell marker was superior.

Given our success in demonstrating the power of molecular

phenotyping to distinguish the diseases, we turn now to the analysis

of the balance between the number of cells we need to average, and

the number of molecular markers we need to measure. For the

‘‘healthy vs diseased’’ case using CD4+ T cells, the percentage of

correctly classified supercells is shown in Fig. 3(g) as a function of the

supercell size and the number of measures used. Note that for single

cells, the classification performance is very poor even using many

measures, but averaging over more than ten cells is sufficient for

reliable classification if a large number of measures is used. In

contrast, just one measured marker is sufficient provided that we

average over 100+ cells. This fact is underscored in Fig. 3(h), where

the intensity distribution for supercells of size 500 are shown

separately for the healthy and the diseased patients, using just the

top marker (CD27). The dashed line indicates the marker intensity

threshold that allows a complete separation of the two classes of

supercells. The ‘‘sarcoidosis vs Behçet’s’’ classification is further

studied in Fig. 3(i) for CD8+ T cells, where the percentage of

correctly classified supercells is shown as a function of the supercell

size and the number of measures used. We find that slightly less than

100 cells are sufficient for reliable classification, as long as the top

five markers are measured. Increasing the number of markers or

averaging over more cells does not strongly change the reliability of

the classification. Finally, the ability to classify Behçet’s disease vs

sarcoidosis when using the top 5 markers is visualized in a new way
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in Fig. 3(j). The visualization is derived from the identification of

patterns in two-dimensional parameter space (Fig. 1A(i)), which has

proven to be a tremendously successful tool for the analysis of low-

dimensional data in flow cytometry. The combined approach of cell

averaging into supercells, followed by machine learning, allows us to

find the correct linear combinations of markers needed to fully

separate the two diseases (Fig. 3(j)). In geometrical terms, we learned

that only 5 dimensions (out of the original 16) are needed; moreover,

we determined the preferred direction that maximizes the gradient

between the ‘‘sarcoidosis class’’ and the ‘‘Behçet’s disease class’’.

This optimal class separation was achieved by means of an

unbiased, mathematically robust method: no additional biological

information was needed to proceed from Fig. 1A(i) to Fig. 3(j).

Discussion

We present a simple approach to quantify disease phenotypes

based on single cell measurements with multiple parameters

measured on each cell. For our study of autoimmune diseases, we

measure 16 parameters for millions of cells with flow cytometry, and

use this information to find a molecular phenotype of Behçet’s

disease. We also measure 15 parameters from hundreds of

fluorescence images obtained via microscopy, and use this

information to automate classification of HGPS. Our data span

many more dimensions than the traditional two parameters used for

visually-aided cell classification (Fig. 1A). We use machine learning,

which allows for a reproducible, objective, and automated approach

to find the optimal boundary between two high- dimensional classes

of data points. The question we tackle is straightforward: do we

obtain more information about a disease by the analysis of more

cells, or by measuring more parameters on each cell?

The key to our novel approach is to introduce variable size cell

groups (‘‘supercells’’), with the group size as an explicit parameter

that we vary systematically. This reveals the number of cells that

need to be grouped in order to obtain a robust disease

classification. We also determine to what degree adding param-

Figure 4. Summary of the supercell approach. (a) 2D synthetic data representing 7 single-cell patient samples in two categories. Due to cell
heterogeneity, different phenotypes overlap and the data are non-separable. (b) A machine learning approach such as support vector machines is
able to find the optimal decision boundary between two classes of datapoints. However, this method (and variants thereof) fail when the samples are
strongly overlapping, as is the usual case for single-cell datasets (recall Fig. 1A(i)). (c) Sample means or higher-order moments of the cell multivariate
distributions generally lead to poor, non-robust phenotypes. The solid line is the class boundary learnt using all datapoints; by removing either of the
support vectors that define this boundary (marked by ‘‘I’’, ‘‘II’’, and ‘‘III’’), the boundary changes as indicated by the dashed lines, thus leading to
jackknife prediction failures. (d) Representing patient samples by supercell distributions, class separation becomes robust. Removing patient samples
‘‘I’’, ‘‘II’’, or ‘‘III’’, the decision boundary changes as shown by the dashed lines. Departures from the boundary learnt using all patients (solid line) are
less significant and do not cause any jackknife failed predictions.
doi:10.1371/journal.pcbi.1003215.g004
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eters reduces the number of cells needed to determine a

phenotype.

Our approach to separate cell groups relies on a machine

learning classification method. It is tailored specifically to

determine the most useful combination of parameters to distin-

guish among all cells or cell groups rather than finding the optimal

low-dimensional representation, as in singular value decomposi-

tion or principal component analysis. This procedure is schemat-

ically illustrated in Fig. 4, where synthetic 2D datasets were

generated to represent patient samples classified in two categories:

4 samples correspond to ‘‘Class A’’, while the remaining 3 samples

are labeled ‘‘Class B’’. At the single-cell level, the data are non-

separable due to cell heterogeneity (Fig. 4(a)). A machine learning

classifier such as support vector machines with a linear kernel

(Fig. 4(b)) can be implemented in order to find the optimal decision

boundary between the two classes; however, this method requires

the data to be separable. More sophisticated variants, such as soft

margin classifiers and nonlinear classifiers can be designed to learn

from non-separable data, even in strongly overlapping cases such

as those usually encountered in single-cell datasets (see e.g.

Fig. 1A(i)). However, our analysis shows that the optimal

‘‘boundary’’ inferred from overlapping distributions is distinct

from the boundary obtained from supercells which actually has

predictive power for phenotyping: the weight of parameters is very

different for single cells and supercells whose distribution is well

separated. In order to avoid overlapping patient samples, one

could characterize each of them by the moments of the cell

multivariate distributions, the simplest example being the sample

means (Fig. 4(c)). This approach, however, lacks robustness: the

decision boundaries are very sensitive to nearby datapoints, in

particular to the support vectors that determine the classification

hyperplanes, thus leading to failed predictions. Supercell distribu-

tions are built by averaging over groups of single cells. By applying

machine learning on supercell samples, a robust class separation is

achieved (Fig. 4(d)).

In HGPS, our approach confirms the current practice that the

number of invaginations (or mean negative curvature) is the most

valuable nuclear metrics for phenotyping the disease using nuclear

images. Importantly, we find that when analyzing 30 cells or more,

a robust phenotype can be obtained simply based on the

invaginations of each cell, and a more in depth analysis of

additional nuclear shape metrics does not significantly reduce the

number of cells needed. Our findings provide a principle guideline

of the minimal cell numbers used in future disease assessments and

high-throughput drug screenings of age-related diseases, in which

abnormal nuclear shape is considered a hallmark phenotype. This

information is of extreme importance in a rare disease like HGPS

with very limited availability of patient samples.

In our second example, we apply our technique to distinguish

healthy individuals from patients with two non-infectious uveitides,

and among those patients we distinguish between Behçet’s disease

and sarcoidosis. In order to distinguish healthy from disease

phenotypes, we found that within the CD4+ T cell subpopulation,

just one marker was enough (Fig. 3(b)). Indeed, CD27 appears

consistently overexpressed in healthy samples (Fig. 3(h)). The

ability to predict healthy and diseased phenotypes based on CD4+

T (super)cells is resilient under the removal of the top markers:

even by removing the top 7 markers from the list, we are still able

to classify patients as healthy or diseased with no failures. In

contrast, CD8+ T cells do not have a clear distinction between

healthy and diseased conditions, even using all markers available

from the flow cytometry experiment (Fig. 3 (c)). However, by

focusing specifically on sarcoidosis and Behçet’s disease, we

demonstrate a robust means of predicting a patient’s diagnosis

based on 5 optimally chosen markers using CD8+ T (super)cells

(Fig. 3(f)). If the top marker (IL22) is removed from the list,

incorrect predictions are observed even using all remaining

markers; therefore, phenotyping sarcoidosis vs Behçet’s is inher-

ently high-dimensional (since it requires at least 5 markers to be

accurate) and also very specific to those markers. An important

evaluation for the future will be to evaluate the efficacy of these

markers in patients with these two systemic disorders who do not

have ocular complications of their disease, i.e. whether these

findings are specific to the ocular disorder, or a reflection of the

systemic disorder itself. By using a precise linear combination of

IL22, CD3, viability, CD8 and CD62L, we are able to separate

the two diseases successfully based on molecular markers (Fig. 3(j)).

Averages of hundreds of cells are required for this phenotyping,

and increasing the number of measured parameters does not

reduce the number of cells required. The molecular markers used

have been reported to be important players in autoimmune

disorders. Yang et al. [36] reported an increased number of Th22

cells and increased serum IL-22 levels in patients with lupus skin

disease, but a decrease in patients with lupus nephritis. CD62L has

been reported to be associated with CD4+CD25brightFOXP3+ cells

in bullous pemphigoid patients [37]. Finally, expanded clones of

CD8+ T lymphocytes are present in the lesions of multiple sclerosis

[38]. Based on the observations from the analyses presented here,

our evaluation of CD8+ T cells has permitted us to see CD8-subset

differences in this cell type in patients diagnosed with different

uveitides.

Our ability to study the tradeoff between measuring more

parameters or analyzing more cells, as shown in Figs. 3(g) and 3(i),

has far-reaching consequences for a number of emerging

technologies that allow for multi-parameter single-cell measure-

ments. For more challenging problems than those considered here,

it may become necessary to study the distributions of the

measurement vectors of individual cells rather than its principal

surrogate of the first moment, and extend the machine learning

algorithms to well-chosen non-linear kernels. High-throughput

automated microscopy, where thousands of cells are imaged

automatically, is quickly becoming the norm, calling for reliable

approaches to classify observations and quantify phenotypes.

Similarly, while simultaneous (multicolor) measurement of 16

parameters is the current state-of-the-art for flow cytometry, a next

generation of high-throughput single-cell analysis tools is emerging

that will allow the measurement of more than 50 parameters at

comparable high throughput by means of mass cytometry [3,4]. It

is now also becoming possible to analyze gene sequences or gene

expression levels for individual cells, although the cost of these

expensive technologies severely limits the sample size to much

fewer cells than flow cytometry [5,6]. Optimizing the tradeoff

between measuring more cells or more parameters, as we

demonstrate here, should allow us to take full advantage of these

powerful and promising next-generation single-cell technologies.

Methods

Ethics Statement
This investigation was conducted according to the principles

expressed in the Declaration of Helsinki and was approved by

institutional review boards at National Eye Institute, National

Institutes of Health. The written informed consent was provided

by all patients.

For the study of Hutchinson-Gilford progeria syndrome,

cultured fibroblasts from two patients (HGADFN164-p15 and

HGADFN167-p15) and two healthy individuals (HGADFN090-

p15 and HGADFN168-p15) were used. The cells were fed with
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fresh MEM medium containing 15% FBS and grown at 37uC. In

order to visualize the nuclei, we performed immunofluorescence

staining of the nuclear membrane with a mouse monoclonal

antibody raised against lamin A/C. (MAB3211). This antibody

has been well characterized in HGPS cells and has also been used

in studies of other laminopathies. Fluorescence images of about

600 nuclei per cell line were taken with a Zeiss fluorescence

microscope at 4006magnification, as shown in the examples from

Figure 1B. Following the procedure from Driscoll et al (15), a

custom-written MATLAB program was used to extract nuclear

shapes and their properties, such as the number of invaginations,

the mean curvature, the standard deviation of the curvature, etc.

In addition to 12 shape measurements, we obtained 3 measure-

ments of the intensity of immunofluorescence from lamin A/C

associated with each nucleus (the full list of measurements is

provided in Figure 2C(i).

For the study of non-infectious uveitides, peripheral blood

samples were obtained from a cohort of 22 patients, out of which

7 were diagnosed with sarcoidosis, 6 with Behçet’s disease, 1 with

retinal vasculitis, while the remaining 8 were healthy controls. 3

different marker panels were studied on each sample, each consisting

of 2 scattering measurements (FSC and SSC) plus 14 or 15 cell

surface fluorochromes. Some common markers (such as CD3, CD4,

CD8, CD27, CD45, and viability) were used on all 3 panels and

were checked for consistency. Separate analyses have been

performed on each set of markers in order to find the best prediction

accuracy. Two marker panels did not lead to accurate sarcoidosis vs

Behçet’s disease phenotypes; the third one, which led to an accurate

phenotype and has been discussed throughout, consisted of FSC,

SSC, IL23R, CD196, CD4, viability, CD8, CD27, CD45, IL17A,

CD197, CD3, IL22, CD62L, CD161, and TNFA.

Pre-processed datasets are provided as Supporting Information.

Multicolor flow cytometry raw datasets are available at the Dryad

Repository: http://dx.doi.org/10.5061/dryad.v6st3.

Data analysis was performed using custom-written programs in

R and Perl.

Supporting Information

Dataset S1 Nuclear shape and lamin A/C measurements for 2

healthy and 2 HGPS cell lines.

(XLS)

Dataset S2 Multicolor flow cytometry (all cells) from 22 patients

labeled according to disease type or healthy status for a

randomized single-cell subsample and for the different supercell

sizes used in this paper.

(XLS)

Dataset S3 Multicolor flow cytometry (CD4+ T cells) from 22

patients labeled according to disease type or healthy status for a

randomized single-cell subsample and for the different supercell

sizes used in this paper.

(XLS)

Dataset S4 Multicolor flow cytometry (CD8+ T cells) from 22

patients labeled according to disease type or healthy status for a

randomized single-cell subsample and for the different supercell

sizes used in this paper.

(XLS)
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