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Abstract The Sheldon spectrum describes a remarkable regularity in aquatic ecosys-

tems: the biomass density as a function of logarithmic body mass is approximately

constant over many orders of magnitude. While size-spectrum models have explained

this phenomenon for assemblages of multicellular organisms, this paper introduces

a species-resolved size-spectrum model to explain the phenomenon in unicellular

plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton

necessarily consists of a large number of coexisting species covering a wide range

of characteristic sizes. The coexistence of many phytoplankton species feeding on

a small number of resources is known as the Paradox of the Plankton. Our model

resolves the paradox by showing that coexistence is facilitated by the allometric scal-

ing of four physiological rates. Two of the allometries have empirical support, the

remaining two emerge from predator-prey interactions exactly when the abundances

follow a Sheldon spectrum. Our plankton model is a scale-invariant trait-based size-

spectrum model: it describes the abundance of phyto- and zooplankton cells as a

function of both size and species trait (the maximal size before cell division). It in-

corporates growth due to resource consumption and predation on smaller cells, death

due to predation, and a flexible cell division process. We give analytic solutions at

steady state for both the within-species size distributions and the relative abundances

across species.
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1 Introduction

Gaining a better understanding of plankton dynamics is of great ecological impor-

tance, both because plankton form an important component of the global carbon cycle

and couples to the global climate system and because plankton provide the base of the

aquatic food chain and therefore drives the productivity of our lakes and oceans. In

spite of enormous progress in plankton modelling, there is still a lack of fundamental

understanding of even some rather striking phenomena. We address this in this paper

with a novel conceptual plankton model that for the first time gives analytical results

that simultaneously describes both the within-species cell size distribution and the

across-species distribution of plankton biomass.

One of the most remarkable patterns in ecology manifests itself in the distribution

of biomass as a function of body size in aquatic ecosystems [54]. Very approximately,

equal intervals of the logarithm of body mass contain equal amounts of biomass per

unit volume. This implies that biomass density decreases approximately as the inverse

of body mass. Size spectra with this approximate shape are observed over many or-

ders of magnitude, encompassing both unicellular and multicellular organisms [21,

47,50] and it has been conjectured that this relationship applies all the way from bac-

teria to whales [54]. Accordingly, aquatic environments are more populated by small

organisms than larger ones in a predictable way [53].

Early theories, without dynamics, gave results consistent with this power law

[44] and they were followed by dynamic theories for multicellular organisms (size-

spectrum models), where the biomass distribution is an outcome of the processes and

interactions between these organisms at different sizes [55,56,12,9,2,13,14,15,26,

38]. In these models, multicellular organisms grow by feeding on and killing smaller

organisms, thereby coupling the two opposing faces of predation: death of the prey,

and body growth of the predator —during which survivors can grow over orders of

magnitude. A common feature of the models is the allometric scaling of the rates of

the different processes. For recent reviews of size-spectrum modelling see [57,24].

Current models of size-spectrum dynamics are constructed with multicellular,

heterotrophic organisms in mind, and make simplifying assumptions about the uni-

cellular plankton on which they ultimately depend to provide a closure for the mod-

els (e.g. [26,14]). The unicellular-multicellular distinction is important. Unicellular

plankton encompass autotrophs (phytoplankton) that use inorganic nutrients and light

to synthesize their own food, as well as heterotrophs (zooplankton) that feed on other

organisms, and mixotrophs that do both. Also, unicellular organisms just double in

size before splitting into two roughly equally-sized cells, rather than going through

the prolonged somatic growth of multicellular organisms. Since cell masses of uni-

cellular plankton span an overall range of approximately 108, the power law cannot

therefore be generated without coexistence of many species.
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Coexistence of species in the plankton is itself an unresolved problem. In the case

of phytoplankton, the problem is known as ‘the paradox of the plankton’, because

of the great diversity of phytoplankton taxa, seemingly unconstrained by the small

number of resources they compete for [30]. There is no consensus yet as to what

mechanism(s) can allow a large number of competing species to coexist on a small

number of resources [49]. Hutchinson thought environmental fluctuations could be

the answer, but this is currently acknowledged to be insufficient as an explanation

[18]. One promising proposal is a strategy of “killing the winner” that involves a

trade-off between competitive ability and defence against enemies [59,65] and that

resembles the mechanism of predator-mediated coexistence observed in ecology [36,

62].

In this paper we propose a dynamic trait-based size-spectrum model for plankton

that incorporates specific cellular mechanisms for growth, feeding, and reproduction,

along with their allometric laws, in order to capture the size spectrum of biomass

distribution in this size region of the aquatic ecosystem (Section 2). We build on well

established models of the cell cycle [19,17,27,28,20,23] but extend them to allow for

many coexisting species. The resulting model describes the dynamics of an ecosys-

tem made of a continuum of phytoplankton species living on a single resource, plus a

continuum of zooplankton species that feed on smaller cells. For the allometric scal-

ing of the growth and division rate we make use of recent experimental measurements

on phytoplankton production [37].

The model is presented in two flavours: an idealised version (Section 3) describ-

ing cells that grow until exactly doubling their size and then split into two identical

cells, and a more general model (Section 4) in which cells are allowed to divide in a

range of sizes and produce two daughter cells of slightly different sizes. In both cases

we provide analytic expressions for the abundance distribution as a function of size

for any species.

For both flavours of the model we first study the conditions under which the

steady state allows for the coexistence of a continuum of infinitely many phytoplank-

ton species and find —not surprisingly— that a sufficient condition is a death rate

that scales allometrically with the same exponent as the growth rate. Then we intro-

duce zooplankton that predate on smaller cells (whether phyto- or zooplankton) and

show that predation produces the required scaling of the death rate if, and only if, the

whole plankton community conforms to Sheldon’s power law size spectrum with an

exponent very close to the observed one. This power law size spectrum arises as the

steady state solution in our model (Section 5).

In other words, within the model assumptions, coexistence of a continuum of

plankton species implies a specific allometric scaling of the death rate and the zoo-

plankton growth rate; the latter allometric scalings imply that the whole community

distributes as a power-law in size; and a power-law size distribution of the community

implies the coexistence of a continuum of plankton species. This is the main result of

our work. It reveals that the paradox of the plankton and the observed size spectrum

in aquatic ecosystems are but two manifestations of the same phenomenon, and are

both deeply rooted in the allometric scaling of basic physiological rates. In Section 6

we show that this allometric scaling makes the model invariant under scale transfor-
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mations. This provides another formulation of our explanation for the origin of the

Sheldon spectrum.

2 Size- and species-resolved phytoplankton model

Our model for phytoplankton is a multispecies variant of the population balance equa-

tion (PBE) model [19,28,20]. Phytoplankton are assumed to be made mostly of uni-

cellular autotrophs that grow through the absorption of inorganic nutrients from the

environment and eventually split into two roughly equal-size daughter cells.

Cells will be described by their current size w and by a size w∗ characteristic of

the cell’s species. For this characteristic size we choose the maximum size a cell can

reach. We measure sizes with respect to some reference size, so that w and w∗ are

dimensionless. This will avoid strange fractional dimensions that would otherwise

arise in allometric scaling expressions later.

The two basic processes of the cellular dynamics are growth and division. We

describe these in detail in the following subsections before using them in section 2.3

to give the dynamical population balance equation for phytoplankton abundances.

2.1 Cell growth

A widely accepted model for organismal growth was proposed long ago by von

Bertalanffy [61]. Although originally it was devised for multicellular organisms, it

has recently been argued that a similar model can be used to describe the growth

of microorganisms [33]. According to von Bertalanffy’s model, the rate at which an

organism grows is the result of a competition between the gain of mass through nutri-

ent uptake and its loss through metabolic consumption. Both terms exhibit allometric

scaling, thus
dw

dt
= Awα −Bwβ . (2.1)

A typical assumption is α = 2/3 —nutrient uptake occurs through the organismal

membrane— and β = 1 —metabolic consumption is proportional to body mass [33].

However other choices are possible and different values have been empirically ob-

tained [35]. Whichever the values, it seems reasonable to constrain the exponents to

satisfy α < β —leading to a slow-down of growth as cells get very large. Constants

A and B will vary from species to species, so depend on w∗.

With this model we can calculate the doubling period of a cell, defined as the time

T (w∗) it takes to grow from w∗/2 to w∗:

T (w∗) =
∫ w∗

w∗/2

dw

Awα −Bwβ
= w∗

∫ 1

1/2

du

Awα
∗ uα −Bw

β
∗ uβ

, (2.2)

where u = w/w∗.

It turns out that this doubling period has been experimentally measured for many

different species of phytoplankton under the same environmental conditions. All the
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results for phytoplankton cells larger than ∼ 5 µm seem to scale with the same func-

tion T = τw
ξ
∗ , where τ is a species-independent constant. Cells smaller than ∼ 5µm

have a doubling period which increases, rather than decreases, as they become smaller

[37]. To all purposes then, our model will describe the community spectrum from

∼ 5 µm upward. There is some controversy in the experimental literature about the

right value of the exponent ξ [35], but we need not be concerned by it. When we need

a concrete value we will adopt the most recent value ξ ≈ 0.15 [37].

The allometric scaling observed for the duplication period can only be compatible

with Eq. (2.2) provided

A ≡ aw
1−α−ξ
∗ , B ≡ bw

1−β−ξ
∗ , (2.3)

where a and b do not depend on w∗. Then the proportionality constant τ is given by

τ =
∫ 1

1/2

du

auα −buβ
. (2.4)

Since τ , α , and β can be experimentally determined, this equation imposes a con-

straint on the constants a and b.

In summary, joining a von Bertalanffy model for the growth rate with the experi-

mental observations for the division rate yields the growth model

dw

dt
= Gp(w,w∗) = w

1−ξ
∗

[

a

(

w

w∗

)α

−b

(

w

w∗

)β
]

. (2.5)

It is worth noting that this growth rate is a homogeneous function satisfying

Gp(λw,λw∗) = λ 1−ξ Gp(w,w∗) (2.6)

for any λ > 0. Also notice that a > b guarantees Gp(w,w∗)> 0 for all 0 6 w 6 w∗.

2.2 Cell division

Let K(w,w∗) denote the division rate of a cell of current size w and maximum size w∗.

We expect K(w,w∗) to grow sharply near w = w∗ —to ensure that division is guaran-

teed to occur before a cell reaches its maximum size. A widely studied cell division

mechanism assumes a ‘sloppy size control’ of the cell division cycle [46,60]. Essen-

tially, this means that cells can duplicate at any moment after reaching a threshold

size wth and before reaching their largest possible size w∗. By proposing a suitable

function K(w,w∗) Tyson and Diekmann [60] were able to fit the size distribution at

division of a yeast.

While [60] assumed that duplication produces two equally-sized daughter cells,

we will in Section 4 allow the size of the daughter cells to be described by a density

Q(w|w′), the probability density that a cell of size w′ splits into two cells of sizes w

and w′−w. By construction Q(w|w′) = 0 if w > w′ or w 6 0, it bears the symmetry

Q(w′−w|w′) = Q(w|w′) and satisfies the normalising condition
∫

∞

0
Q(w|w′)dw = 1 (2.7)
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for all 0 < w′ < ∞.

It is reasonable to assume that Q(w|w′) is peaked around w = w′/2 — daughter

cells will be roughly half the size of the parent cell. Another reasonable assumption

is that this distribution scales with cell size (i.e., fluctuations around the ideal split-

ting size w = w′/2 are relative to w′). This amounts to assuming that Q(w|w′) is a

homogeneous function of w and w′,

Q(λw,λw′) = λ−1Q(w,w′). (2.8)

The scaling exponent of −1 is due to the fact that Q is a probability density. We can

therefore write Q in the scaling form

Q(w|w′) =
1

w′
q
( w

w′

)

, where

∫

∞

0
q(x)dx = 1. (2.9)

2.3 Cell population dynamics

We will assume that the number of species and their population is large enough so

that we can make a continuum description through a density function p(w,w∗, t), such

that p(w,w∗, t)dwdw∗ is the number of cells per unit volume whose maximum sizes

are between w∗ and w∗+dw∗ and whose sizes at time t are between w and w+dw.

With these ingredients, the time evolution of the abundances p(w,w∗, t) will be

given by the population balance equation (PBE) [19,28,20]

∂

∂ t
p(w,w∗, t) = −

∂

∂w

[

Gp(w,w∗)p(w,w∗, t)
]

+2

∫ w∗

0
Q(w|w′)K(w′,w∗)p(w′,w∗, t)dw′

−K(w,w∗)p(w,w∗, t)−M(w,w∗)p(w,w∗, t).

(2.10)

The first two terms describe the dynamics of a growing organism as an extension of

the McKendrick–von Foerster equation [55,56]. The third term is the rate at which

cells of size w are produced from the division of cells of size 0 < w′ < w∗ —the factor

2 taking care of the fact that each parent cell yields two daughter cells. The fourth

term is the rate at which cells of size w divide. The last term is the rate at which cells

of size w die for whatever reason. The same equation describes this process for any

species, hence w∗ enters as a parameter in every rate function involved.

The fact that every negative term on the right hand side of the population balance

equation (2.10) is proportional to p(w,w∗, t), ensures the necessary property that the

population density p(w,w∗, t) can never evolve to be negative.

2.4 Nutrient dynamics

The growth model just developed assumes an infinite abundance of nutrients. In real

aquatic ecosystems nutrients are limited though, and growth is hindered when nutri-

ents are scarce. Accordingly, we need to modify our growth model in order to take

limited nutrients into account.
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In the von Bertalanffy equation (2.5) for the cell growth rate, the first term de-

scribes the nutrient uptake through the cell membrane, and it is modulated by the

rate a. This rate will of course depend on the availability of the nutrients needed for

growth. Denoting by N the amount of nutrient per unit volume, we need to replace a

by a function a(N). The simplest way to do this is through the Monod equation [29]

a(N) = a∞

N

r+N
, (2.11)

with r the Michaelis-Mertens constant. This function has the important property that

the factor a(N) monotonically increases from 0 toward its saturation value a∞. How-

ever, other choices for a(N) with this property are also possible.

Likewise, the details of how the nutrient dynamics is modelled are not important

for our conclusions. All we will require is that the uptake of nutrient by the plankton

leads to a corresponding depletion in the nutrient N. Also, in order to sustain a non-

zero plankton population, there needs to be some replenishment of nutrient. The PBE

model incorporates that through a chemostat of maximum capacity N0 [19,27,28]:

dN

dt
= ρ(N)−σ(N, p), ρ(N) = ρ0

(

1−
N

N0

)

. (2.12)

Here σ(N, p) represents the rate of nutrients consumption by all phytoplankton cells,

which is proportional to the uptake rate (the positive term in the expression for

Gp(w,w∗, t) in Eq. (2.5)), integrated over all species sizes w∗ and all cell sizes w:

σ(N, p) =
a(N)

θ

∫

∞

0
dw∗ w

1−α−ξ
∗

∫ w∗

0
dwwα p(w,w∗, t). (2.13)

The proportionality constant θ is the yield constant, i.e. the amount of biomass gen-

erated per unit of nutrient .

3 Idealised cell division process

The important features of our model are insensitive to the details of the cell division

process. So it makes sense to first exhibit these features by solving the model with

the simplest idealised version of the cell division. Thus in this section we assume that

cells only split when they reach exactly the size w∗, and they generate two identically

sized daughter cells [17].

This idealised cell division has an undesirable property: Consider a peak in abun-

dance around a particular size. Due to growth of the cells making up the peak, it willl

move through the size spectrum without changing its shape until it reaches the maxi-

mum size w∗. There all cells will divide to produce daughter cells at exactly the size

w∗/2, producing a new peak again of the same shape. This peak will then again move

up to w∗, divide and restart its journey, ad infinitum. In short: the solutions in this

idealised model will be periodic, rather than approaching the steady state solution.

This will be remedied in the general case that we will discuss in Section 4.
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3.1 Dynamic equations

The idealised cell division amounts to choosing Q(w|w′) = δ (w−w′/2) —two iden-

tical daughter cells— and K(w,w∗) = κ(w∗)δ (w−w∗) —division occurs only when

w = w∗. Here δ (x) denotes the Dirac delta function. The parameter κ(w∗) will be

determined below. This choice transforms the evolution equation (2.10) into

∂

∂ t
p(w,w∗, t) = −

∂

∂w

[

Gp(w,w∗)p(w,w∗, t)
]

+κ(w∗)p(w∗,w∗, t)[2δ (w−w∗/2)−δ (w−w∗)]

−M(w,w∗)p(w,w∗, t),

(3.1)

and of course p(w,w∗, t) = 0 for w > w∗ and w < w∗/2.

The two delta functions on the right-hand side of Eq. (3.1) imply that the function

p(w,w∗, t) must be discontinuous at w = w∗/2 and w = w∗ (recall that Θ ′(x) = δ (x),
where Θ(x) is a Heaviside step function, equal to 1 for x > 0 and to 0 for x < 0). The

height of the two discontinuities must be such that the derivative of the right-hand

side cancels the two deltas. This leads to the two conditions

Gp(w∗,w∗)p(w∗,w∗, t) = κ(w∗)p(w∗,w∗, t), (3.2)

Gp(w∗/2,w∗)p(w∗/2,w∗, t) = 2κ(w∗)p(w∗,w∗, t). (3.3)

Equation (3.2) determines κ(w∗) = Gp(w∗,w∗), so that Eq. (3.3) implies the bound-

ary condition

Gp(w∗/2,w∗)p(w∗/2,w∗, t) = 2Gp(w∗,w∗)p(w∗,w∗, t). (3.4)

Notice that, since δ (λw−λw∗) = λ−1δ (w−w∗), this link between the division

rate function K(w,w∗) and the growth rate Gp(w,w∗) renders the former homoge-

neous in its arguments,

K(λw,λw∗) = λ−ξ K(w,w∗). (3.5)

In summary, when considering the idealised division process, the phytoplankton

density p(w,w∗, t) is described by the equation

∂

∂ t
p(w,w∗, t)+

∂

∂w

[

Gp(w,w∗)p(w,w∗, t)
]

+M(w,w∗)p(w,w∗, t) = 0, (3.6)

in the interval w∗/2 6 w 6 w∗, with the boundary condition (3.4). This is coupled to

Eqs. (2.12) and (2.13) for the nutrient .

3.2 Steady state

We can look for solutions of Eq. (3.6) that do not depend on time by solving the first

order ordinary differential equation

∂

∂w

[

Gp(w,w∗)p(w,w∗)
]

+M(w,w∗)p(w,w∗) = 0,
w∗

2
6 w 6 w∗, (3.7)
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with the boundary condition (3.4). A straightforward integration of Eq. (3.7) yields

p(w,w∗) = p(w∗,w∗)
Gp(w∗,w∗)

Gp(w,w∗)
exp

{

∫ w∗

w

M(w′,w∗)

Gp(w′,w∗)
dw′

}

, (3.8)

where p(w∗,w∗) is some (as yet) arbitrary value. If we now impose the boundary

condition (3.4) on the solution (3.8) we arrive at the condition

∫ w∗

w∗/2

M(w′,w∗)

Gp(w′,w∗)
dw′ = log2. (3.9)

The left-hand side of this condition is in general a function of w∗. This means that

only those species whose maximum sizes are such that Eq. (3.9) holds can have

a non-zero stationary abundance. The only possibility for the remaining species is

p(w∗,w∗) = 0, i.e., extinction.

There is only one case in which Eq. (3.9) can hold for all species, namely when

the death rate is a homogeneous function M(λw,λw∗) = λ−ξ M(w,w∗), or, equiva-

lently, if it has the shape

M(w,w∗) = w
−ξ
∗ m(w/w∗) (3.10)

for some function m(x). This allometric scaling of the death rate is a necessary condi-

tion for coexistence. It is also a sufficient condition, because provided this condition

is met, the solution (3.8) takes the explicit form

p(w,w∗) = p(w∗,w∗)φ(w/w∗), (3.11)

with

φ(x) =
a(N)−b

a(N)xα −bxβ
exp

{

∫ 1

x

m(y)

a(N)yα −byβ
dy

}

. (3.12)

In other words, all species show the same size distribution up to a constant p(w∗,w∗)
that determines the overall abundance of that species.

In this case the boundary condition (3.9) becomes

∫ 1

1/2

m(x)

a(N)xα −bxβ
dx = log2. (3.13)

This equation holds for one and only one value of N (remember that a(N) is an

increasing function of N and a(0) = 0 and a∞ > b). For any value other than this,

no steady state solution is possible except full extinction. On the other hand, for this

specific N all species coexist in the steady state.

According to Eq. (2.12), the condition for N to be the nutrient level at the steady

state is ρ(N) = σ(N, p). Using the expression (3.11) for the steady-state p(w,w∗) in

the expression (2.13) for σ(N, p), this can be expressed as the following constraint

on the overall abundances:

∫

∞

0
w

2−ξ
∗ p(w∗,w∗)dw∗ =

θρ(N)

a(N)

(

∫ 1

0
xα φ(x)dx

)−1

. (3.14)
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This is only a single linear constraint on the function p(w∗,w∗) and thus is far from

determining it uniquely.

To summarise this section: if the death rate scales allometrically with size and

all phytoplankton species share a common limited resource then there is a steady

state of the system in which all species coexist on this single resource. The resource

level is tuned by consumption. In its turn, its value imposes a global constraint on the

abundances of phytoplankton species.

This result is a manifestation of the ‘paradox of the plankton’ [30], and reveals a

mechanism by which it might come about: a similar allometric scaling for both the

growth and the death rate. As of now, it is hard to think of a reason why this similar

scaling should occur, but we will return to this point in Section 5 where we will show

that predation is one possible mechanism.

4 General division process

Although the idealised division process described in the previous section is a simple

setup that provides important insights on the system behaviour, it has some undesir-

able features that call for improvements. Perhaps the worst of them is the fact that we

illustrated at the start of section 3: any irregularity of the initial distribution of cell

sizes will remain there forever because there is nothing that smooths it out. Conse-

quently, the distribution could never evolve towards the steady-state distribution. Two

mechanisms can achieve the necessary size mixing to provide this smoothing: first,

the fact that cells do not split only when they exactly reach the size w∗, and second,

the fact that the sizes of the two daughter cells are not identical. Both of them require

introducing functions K(w,w∗) and Q(w|w′) more general than Dirac’s deltas.

4.1 Model constraints

The problem boils down to solving the PBE (2.10). Although linear, this is a difficult

integro-differential problem whose general solution can only be obtained in the form

of an infinite functional series [27]. This notwithstanding, there is a general class of

functions K(w,w∗) and Q(w|w′) for which a closed form solution is possible, and the

constraints that define this class are general enough to describe real situations. Let us

spell out these constraints.

To guarantee that all cells divide before growing beyond size w∗ the rate K(w,w∗)
is chosen to satisfy

∫ w∗

0
K(w,w∗)dw = ∞. (4.1)

There will be some smallest size wth below which cells can not divide. Hence K(w,w∗)
is non-zero only for wth < w < w∗. Let us also assume that Q(w|w′) is non-zero only

for (1−δ )w′/2 < w < (1+δ )w′/2 for some δ that measures the maximum variabil-

ity of the daughter cells’ sizes relative to the parent’s. With these two assumptions

it is clear that the largest possible size of a daughter cell is w+ = (1+ δ )w∗/2. Like

[46] we further assume w+ < wth.
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Let us split the abundance into ‘large’ and ‘small’ cells according to

p(w,w∗, t) =

{

pl(w,w∗, t), w ≥ w+,

ps(w,w∗, t), w ≤ w+.
(4.2)

Then the integral term in the right-hand side of Eq. (2.10) will make no contribution

for any w > w+, and we will have, for w+ 6 w 6 w∗,

∂

∂ t
pl(w,w∗, t) = −

∂

∂w

[

Gp(w,w∗)pl(w,w∗, t)
]

−K(w,w∗)pl(w,w∗, t)−M(w,w∗)pl(w,w∗, t).

(4.3)

Due to our assumption that w+ < wth we can replace p(w,w∗, t) by pl(w,w∗, t) in

the integral term of Eq. (2.10); hence, for 0 6 w 6 w+,

∂

∂ t
ps(w,w∗, t) = −

∂

∂w

[

Gp(w,w∗)ps(w,w∗, t)
]

+2

∫ w∗

wth

Q(w|w′)K(w′,w∗)pl(w
′,w∗, t)dw′

−M(w,w∗)ps(w,w∗, t).

(4.4)

We have transformed the original problem into two, each in a different interval.

The first problem, Eq. (4.3), is a homogeneous linear differential equation decoupled

from the second one, Eq. (4.4), which turns out to be —once the solution of the first

problem is known— a non-homogeneous linear differential equation.

These two equations, (4.3) and (4.4), have to be supplemented with the boundary

conditions

ps(0,w∗, t) = 0, ps(w+,w∗, t) = pl(w+,w∗, t), pl(w∗,w∗, t) = 0. (4.5)

4.2 Scaling behaviour of the division rate

In the idealised model (Section 3.1), since K(w,w∗) was proportional to a Dirac’s

delta, we could obtain its scaling from that of Gp(w,w∗) straight away. Unfortunately,

the argument is no longer valid for this more general setup. There is a workaround

though: we can prove that K(w,w∗) scales as in the idealised case from the empiri-

cal observation that the population growth rate of a single species in a nutrient-rich

environment scales as Λ ∼ w
−ξ
∗ [37].

Suppose we prepare a nutrient-rich culture of cells of maximum size w∗. Equa-

tions (4.3) and (4.4) will describe the abundances at different sizes. In this situa-

tion, for some initial time interval we can assume M(w,w∗) = 0, so the population

will increase exponentially at rate Λ . Introducing pl(w+,w∗, t) = pl(w+,w∗)e
Λ t and

ps(w+,w∗, t) = ps(w+,w∗)e
Λ t into those equations we end up with

∂

∂w

[

Gp(w,w∗)pl(w,w∗)
]

= −K(w,w∗)pl(w,w∗)−Λ pl(w,w∗), (4.6)

∂

∂w

[

Gp(w,w∗)ps(w,w∗)
]

=2

∫ w∗

wth

Q(w|w′)K(w′,w∗)pl(w
′,w∗)dw′

−Λ ps(w,w∗).

(4.7)
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The solution of Eq. (4.6) is

pl(w,w∗) = pl(w+,w∗)
Gp(w+,w∗)

Gp(w,w∗)
E(w,w∗), (4.8)

E(w,w∗) = exp

{

−
∫ w

w+

K(w′,w∗)+Λ

Gp(w′,w∗)
dw′

}

, (4.9)

with pl(w+,w∗) an undetermined constant.

As for Eq. (4.7), its solution is

ps(w,w∗) = pl(w,w∗)

[

1−
∫ w+

w

H(w′,w∗)

E(w′,w∗)
dw′

]

, (4.10)

H(w,w∗) = 2

∫ w∗

wth

Q(w|w′)
K(w′,w∗)

Gp(w′,w∗)
E(w′,w∗)dw′. (4.11)

The condition pl(w+,w∗, t) = ps(w+,w∗, t) is already met, and the boundary condi-

tion pl(w∗,w∗, t) = 0 follows from Eq. (4.1). The boundary condition ps(0,w∗, t) = 0

implies
∫ w+

0

H(w′,w∗)

E(w′,w∗)
dw′ = 1. (4.12)

This equation determines the population growth rate Λ and allows us to rewrite

Eq. (4.10) as

ps(w,w∗) = pl(w,w∗)
∫ w

0

H(w′,w∗)

E(w′,w∗)
dw′. (4.13)

Equation (4.12) is the key to infer the scaling of K(w,w∗). If, in agreement with

empirical measurements, Λ = ℓw
−ξ
∗ with ℓ independent on w∗, then Eq. (4.12) be-

comes

2

∫ 1+δ
2

0
dx

∫ 1

wth
w∗

dy

y
q

(

x

y

)

w
ξ
∗K(w∗y,w∗)

a(N)yα −byβ
exp

{

∫ x

y

w
ξ
∗K(w∗z,w∗)+ ℓ

a(N)zα −bzβ
dz

}

= 1,

a condition that can only be met provided wth/w∗ does not depend on w∗ and

K(w,w∗) = w
−ξ
∗ k(w/w∗), (4.14)

in other words, if the scaling K(λw,λw∗) = λ−ξ K(w,w∗) holds. Of course it is also

intuitively clear that the division rate has to scale as w
−ξ
∗ given that the doubling

period T (w∗) scales as w
ξ
∗ , as discussed in Section 2.1. Thus we see that the same

empirical observation that leads to the functional form (2.5) for Gp(w,w∗) also leads

to Eq. (4.14).
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4.3 Steady state

The steady state of Eqs. (4.3) and (4.4) is readily obtained by replacing Λ with

M(w,w∗) in Eqs. (4.6) and (4.7). The solution will be as given by Eqs. (4.8) and

(4.13), but with E(w,w∗) given by

E(w,w∗) = exp

{

−
∫ w

w+

K(w′,w∗)+M(w′,w∗)

Gp(w′,w∗)
dw′

}

. (4.15)

The boundary condition (4.12) now fixes the value of a(N) in the function Gp(w,w∗)
and thereby determines the steady-state nutrient level N.

The same considerations as for the idealised case hold here. Equation (4.12) will,

in general, depend on w∗ and therefore hold for at most one or a few species. The

other species are extinct in the steady state. Given the scaling (4.14) for the division

rate, the requirement for coexistence of all species is the scaling (3.10) of the death

rate, because then E(w,w∗) = e(w/w∗) and H(w,w∗) = w−1
∗ h(w/w∗), where

e(x) = exp

{

−
∫ x

1+δ
2

k(y)+m(y)

a(N)yα −byβ
dy

}

, (4.16)

h(x) = 2

∫ 1

wth
w∗

k(y)e(y)

a(N)yα −byβ
q

(

x

y

)

1

y
dy, (4.17)

and the boundary condition (4.12) becomes

∫ 1+δ
2

0

h(x)

e(x)
dx = 1 (4.18)

regardless of the species.

Finally, the steady state abundances are given by

p(w,w∗) = p(w+,w∗)ψ(w/w∗), (4.19)

where p(w+,w∗) is an undetermined function of w∗ and

ψ(x) =
a(N)

(

1+δ
2

)α
−b

(

1+δ
2

)β

a(N)xα −bxβ
e(x)Θ(x), (4.20)

Θ(x) =











1, x > 1+δ
2

,
∫ x

0

h(y)

e(y)
dy, x < 1+δ

2
.

(4.21)

A few remarks will make clear what the abundance distribution looks like. To

begin with, property (4.1) of K(w,w∗) implies that e(1) = 0, so p(w∗,w∗) = 0. On the

other hand, given that q(x/y)= 0 except for (1−δ )/2< x/y< (1+δ )/2 (i.e. 2x/(1+
δ )< y < 2x/(1−δ )), function h(x) = 0 except for wth(1−δ )/2w∗ < x < (1+δ )/2.

This means that p(w,w∗) = 0 for all w 6 wth(1− δ )/2 and that it is a differentiable

function in the whole interval [0,w∗]. From the fact that ∂ p(w,w∗)/∂w < 0 when

w > w+ we can conclude that the maximum of this function will occur at some point

wmax < w+.
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Fig. 1 The steady-state within-species size-distribution ψ(x), with constant mortality, growth parameter

values a= 0.7,b= 0.5,α = 0.85,β = 1, a division threshold of 0.7w∗ and rate K(w,w∗) given by Eq. (4.14)

with k(x) = 4(x−0.7)2/(1− x) and daughter cell sizes distributed uniformly between 0.4w∗ and 0.6w∗.

5 Predation by zooplankton

In the idealised model of cell division of Section 3 as well as in the more general

model of Section 4, we have seen that the allometric scaling of the death rate is

a crucial ingredient to the coexistence of multiple phytoplankton species living on

one or a few resources. The main cause of phytoplankton death is predation. Many

species feed on phytoplankton, from unicellular organisms to whales. Even though a

detailed model of the marine ecosystem would have to include these very many types

of grazers as well as their predators, in order to keep the model simple —and at the

same time to illustrate how predation can provide the sort of death rate necessary for

coexistence— we will focus only on unicellular zooplankton.

We will denote the density of zooplankton cells by z(w,w∗, t), so that the number

of cells in a unit volume with a maximum size between w∗ and w∗+dw∗ that at time

t have a size between w and w+dw is z(w,w∗, t)dwdw∗.

To model predation, we introduce a new rate function S(w,w′): the rate at which

a given predator cell of size w preys on a given prey cell of size w′. This rate could

also be allowed to depend on the specific predator and prey species through w∗ and

w′
∗. However, this would introduce unnecessary notational complexity without adding

anything qualitatively different to the discussion.

A common ansatz for this rate function in the literature is

S(w,w′) = wν s(w/w′). (5.1)

The second factor is a kernel that selects the preferred prey size relative to the size

of the predator [66]. The power of w in front of it arises from the foraging strategy,

which is known to depend allometrically on cell size [16].
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The mortality rate due to predation is obtained by integrating the contributions

from all predators. For the sake of completeness, a background death due to other

sources —for which we will adopt the allometric scaling (3.10)— will be added.

Thus we set

M(w,w∗, t) =
∫

∞

0
S(w′,w)zc(w

′, t)dw′+w
−ξ
∗ mb(w/w∗), (5.2)

where the zooplankton community spectrum is defined as

zc(w, t) =
∫

∞

0
z(w,w∗, t)dw∗. (5.3)

Zooplankton abundance is described by an equation similar to Eq. (2.10),

∂

∂ t
z(w,w∗, t) = −

∂

∂w

[

Gz(w,w∗, t)z(w,w∗, t)
]

+2

∫

∞

0
Q(w|w′)Kz(w

′,w∗, t)z(w
′,w∗, t)dw′

−Kz(w,w∗, t)z(w,w∗, t)−M(w,w∗, t)z(w,w∗, t),

(5.4)

where the growth rate is now

Gz(w,w∗, t) =
∫

∞

0
S(w,w′)εw′

[

pc(w
′, t)+ zc(w

′, t)
]

dw′−bw
1−ξ
∗

(

w

w∗

)β

, (5.5)

with the phytoplankton community spectrum defined as

pc(w, t) =
∫

∞

0
p(w,w∗, t)dw∗. (5.6)

The first term in (5.5) represents the uptake of nutrients from predation. The fac-

tor ε expresses the efficiency with which prey biomass w′ is converted into predator

biomass. It is assumed that predators prey indiscriminately on all species of cells,

whether zoo- or phytoplankton. The second term accounts for the metabolic con-

sumption. Although we choose this to be the same as for phytoplankton cells (see

Eq. (2.5)), substituting different values for b and β would not change the results of

the model qualitatively.

The steady state of the model we have just introduced has an important property

that is the main result of this paper, namely that, under the assumptions of the model

—in particular the allometric scalings assumed for for the phytoplankton growth rate

(Eq. (2.6)) as well as for the predation kernel (Eq. (5.1))—, the death rate M(w,w∗)
and the zooplankton growth rate Gz(w,w∗) scale allometrically as

M(λw,λw∗) = λ−ξ M(w,w∗) and Gz(λw,λw∗) = λ 1−ξ Gz(w,w∗) (5.7)

if, and only if, the community spectra of the phyto- and zooplankton scale as

pc(λw) = λ−γ pc(w) and zc(λw) = λ−γ zc(w), (5.8)

with γ = 1+ν +ξ .
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The importance of this result lies in the fact that, according to the discussion of

Secs. 3.2 (in the paragraph containing eq. (3.10)) and 4.3 (second paragraph), this

allometric scaling of M(w,w∗) is a necessary and sufficient condition for the steady

state to exhibit a species-rich phytoplankton community, and similarly, given the scal-

ing of M(w,w∗), that of Gz(w,w∗) becomes then a necessary and sufficient condition

for the steady state to exhibit a species-rich zooplankton community. Accordingly, the

paradox of the plankton and the power-law size spectrum of the plankton community

are two manifestations of one single phenomenon —which also expresses itself in the

allometric scaling of those two rates.

We will discuss this point further in the Discussion section, and devote the rest

of this section to proving this result. If we substitute zc = z0w−γ within Eq. (5.2) we

obtain

M(w,w∗) = w
−ξ
∗ m(w/w∗), m(x) = mb(x)+ z0 x−ξ

∫

∞

0
y−ξ−1s(y)dy. (5.9)

This trivially satisfies the required allometric scaling. If we substitute both pc =
φ0w−γ and zc = z0w−γ within (5.5) we arrive at

Gz(w,w∗) = w
1−ξ
∗

[

apz

(

w

w∗

)1−ξ

−b

(

w

w∗

)β
]

,

apz = ε(p0 + z0)
∫

∞

0
xγ−3s(x)dx.

(5.10)

This also complies with the required allometric scaling.

To prove the converse we impose the scaling M(λw,λw∗) = λ−ξ M(w,w∗) on

Eq. (5.2), which leads to

∫

∞

0
S(w′,λw)zc(w

′)dw′ = λ−ξ
∫

∞

0
S(w′,w)zc(w

′)dw′.

Changing the variable w′ = λu and using the scaling S(λw,λw′) = λ ν S(w,w′) de-

rived from (5.1), this equation transforms into

λ 1+ν
∫

∞

0
S(u,w)zc(λu)du = λ−ξ

∫

∞

0
S(w′,w)zc(w

′)dw′,

which holds if, and only if, zc(λw) = λ−γ zc(w) with γ = 1+ν +ξ . Doing the same

with the zooplankton growth rate (5.5) amounts to imposing the scaling

∫

∞

0
S(λw,w′)w′

[

pc(w
′)+ zc(w

′)
]

dw′ = λ 1−ξ
∫

∞

0
S(w,w′)w′

[

pc(w
′)+ zc(w

′)
]

dw′,

which, using the same argument as above, leads to pc(λw) = λ−γ pc(w).
An interesting by-product of this result is that the expressions for M(w,w∗) and

Gz(w,w∗) have the same scaling form as those introduced in the analysis of phyto-

plankton in previous sections. Therefore we can obtain the steady state of the full

system doing similar calculations. We will discuss this steady state first as obtained

under the idealised division assumption and then as obtained for the general model.
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5.1 Steady state with idealised division process

We can again make the idealised division assumption that cells divide exactly at size

w∗ into two equal-size cells. As in the case of phytoplankton, this amounts to choos-

ing Kz(w,w∗, t) = Gz(w,w∗, t)δ (w−w∗) and Q(w|w′) = δ (w−w′/2), which trans-

forms the population balance equation (2.10) into

∂

∂ t
z(w,w∗, t) =−

∂

∂w

[

Gz(w,w∗, t)z(w,w∗, t)
]

−M(w,w∗, t)z(w,w∗, t), (5.11)

valid in the interval w∗/2 6 w 6 w∗, with the boundary condition

2Gz(w∗,w∗, t)z(w∗,w∗, t) = Gz(w∗/2,w∗, t)z(w∗/2,w∗, t). (5.12)

The expressions for the death and growth rates for zooplankton are formally

the same as those for phytoplankton. Therefore the steady state size distributions

of species abundances are given by

p(w,w∗) = p(w∗,w∗)φp(w/w∗), z(w,w∗) = z(w∗,w∗)φz(w/w∗), (5.13)

where

φp(x) =
a(N)−b

a(N)xα −bxβ
exp

{

∫ 1

x

m(y)

a(N)yα −byβ
dy

}

, (5.14)

N being the steady state value of the nutrient concentration, and

φz(x) =
apz −b

apzx1−ξ −bxβ
exp

{

∫ 1

x

m(y)

apzy1−ξ −byβ
dy

}

(5.15)

with apz given in Eq. (5.10).

The overall species abundances p(w∗,w∗) and z(w∗,w∗) can be obtained through

Eqs. (5.3) and (5.6). For the phytoplankton, for instance, given that p(w,w∗) = 0 for

w > w∗,

pc(w) =
∫

∞

w
p(w∗,w∗)φp(w/w∗)dx = w

∫ 1

0
p
(w

x
,

w

x

)

φp(x)
dx

x2
.

Now, given the scaling pc(λw)= λ−γ pc(w), this equation implies that p(λw∗,λw∗)=
λ−γ−1 p(w∗,w∗), i.e.,

p(w∗,w∗) =
p0

Ip(γ −1)
w
−γ−1
∗ , (5.16)

in terms of the functions

Ip(η) =
∫ 1

0
xη φp(x)dx, Iz(η) =

∫ 1

0
xη φz(x)dx. (5.17)

A similar argument yields

z(w∗,w∗) =
z0

Iz(γ −1)
w
−γ−1
∗ . (5.18)

As in the case of phytoplankton alone, the level of nutrient at the steady state is

determined by the boundary condition (3.13), which fixes the value of a(N). There



18 José A. Cuesta et al.

is a problem though. In this idealised version of a plankton community we are im-

plicitly assuming an infinite biomass, because we are not imposing any lower nor

upper limit on the size of cells. This translates into an infinite nutrient uptake by the

phytoplankton,

σ(N, p) =
a(N)

θ

∫

∞

0
dw∗ w

1−α−ξ
∗

∫ w∗

0
dwwα p(w,w∗)

=
a(N)

θ
p0

Ip(α)

Ip(γ −1)

∫

∞

0
dw∗ w

1−ξ−γ
∗ ,

which will then require an infinite amount of nutrient to survive.

In reality there will always be a minimum size wmin and a maximum size wmax,

so if we introduce the factor

Ξ =
∫ wmax

wmin

dw∗ w
1−ξ−γ
∗ (5.19)

and assume that all resource-related quantities diverge proportional to Ξ , we can

rescale those quantities accordingly, so that they stay finite also in the limit of wmin →
0 and wmax → ∞. Hence we introduce a renormalised nutrient concentration N̂ =
limN/Ξ , where the limit takes wmin → 0 and wmax → ∞, and similarly with other

variables (a hat will henceforth denote these renormalised quantities). The dynamics

of the nutrient (2.12), in terms of renormalised quantities, becomes1

dN̂

dt
= ρ̂(N̂)− σ̂(N̂, p). (5.20)

Hence in the steady state the renormalised nutrient concentration satisfies ρ̂(N̂)−
σ̂(N̂, p), which can be rewritten as

p0 =
θρ̂(N̂)Ip(γ −1)

â(N̂)Ip(α)
. (5.21)

Once we have determined p0, the boundary condition

∫ 1

1/2

m(y)

apzy1−ξ −byβ
dy = log2 (5.22)

yields apz, which in turns determines z0 via Eq. (5.10).

5.2 Steady state with general division process

We can introduce a division rate for zooplankton Kz(w,w∗) with similar properties

as that for phytoplankton. The simplest choice is to take the same function —as it

is conceivable that the dynamics of cell division does not depend on the feeding

mechanism— or any other alternative, but in any case scaling (4.14) must hold for

1 In these expressions â(N̂) = a∞N̂/(r̂+ N̂) and ρ̂(N̂) = ρ̂0(1− N̂/N̂0).
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Kz(w,w∗) as well. Also, we assume that the size distribution of daugher cells is de-

scribed by the same function Q(w|w′).
Then we can introduce a similar splitting for zooplankton abundance

z(w,w∗, t) =

{

zl(w,w∗, t), w ≥ w+,

zs(w,w∗, t), w ≤ w+,
(5.23)

and write equations similar to (4.3) and (4.4). The steady state of those equations will

be given by

p(w,w∗) = p(w+,w∗)ψp(w/w∗), z(w,w∗) = z(w+,w∗)ψz(w/w∗), (5.24)

where

ψp(x) =
a(N)

(

1+δ
2

)α
−b

(

1+δ
2

)β

a(N)xα −bxβ
ep(x)Θp(x), (5.25)

ep(x) = exp

{

−
∫ x

1+δ
2

k(y)+m(y)

a(N)yα −byβ
dy

}

, (5.26)

hp(x) =
∫ 1

wth
w∗

k(y)ep(y)

a(N)yα −byβ
q

(

x

y

)

dy, (5.27)

Θp(x) =











1, x > 1+δ
2

,
∫ x

0

k(y)

ep(y)
dy, x < 1+δ

2
,

(5.28)

and

ψz(x) =
apz

(

1+δ
2

)1−ξ
−b

(

1+δ
2

)β

apzx1−ξ −bxβ
ez(x)Θz(x), (5.29)

ez(x) = exp

{

−
∫ x

1+δ
2

k(y)+m(y)

apzy1−ξ −byβ
dy

}

, (5.30)

hz(x) =
∫ 1

wth
w∗

k(y)ez(y)

apzy1−ξ −byβ
q

(

x

y

)

dy, (5.31)

Θz(x) =











1, x > 1+δ
2

,
∫ x

0

k(y)

ez(y)
dy, x < 1+δ

2
.

(5.32)

Introducing the functions

Jp(η) =
∫ 1

0
xη ψp(x)dx, Jz(η) =

∫ 1

0
xη ψz(x)dx, (5.33)
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and reproducing the arguments of Section 5.1, we obtain

p(w+,w∗) =
p0

Jp(γ −1)
w
−γ−1
∗ , z(w+,w∗) =

z0

Jz(γ −1)
w
−γ−1
∗ , (5.34)

with

p0 =
θρ̂(N̂)Jp(γ −1)

â(N̂)Jp(α)
(5.35)

and z0 derived from (5.10), with apz obtained through the boundary condition

∫ 1+δ
2

0

hz(y)

ez(y)
dy = 1. (5.36)

What we can conclude from the analysis of the last two sections is that only

two steady states are possible in this system in which zooplankton predate on phyto-

plankton: (a) a collapsed community in which at most a few species of phytoplankton

—and possibly of zooplankton— survive; or (b) a community made of a continuum

of species of sizes 0 < w < ∞ that align on a single power law spectrum, with an

exponent γ determined by the allometry of the phytoplankton growth rate and of the

zooplankton predation rate.

It is interesting to realise how the different facts assemble together to yield this

result. On the one hand, as zooplankton predation is the main cause of phytoplank-

ton mortality, in order for several phytoplankton species to coexist the zooplankton

community is forced to distribute their abundances on a power law. In turn, zoo-

plankton grow by predation, and in order for several zooplankton species to coexist

the phytoplankton community is forced to lie on the same power law. We see then

that both communities sustain each other, and that biodiversity is both the cause and

the consequence of the power law size spectrum.

6 Scale invariance

In the last paragraph of Section 5 we gave an intuitive explanation of why both

the phytoplankton and the zooplankton spectrum have to follow a power law in the

steady-state. There is also a more formal explanation that we would like to exhibit

in this section: the steady-state equations are scale-invariant in the sense that if an

abundance spectrum p(w,w∗), z(w,w∗) is a solution of the steady-state equations for

some level of nutrient N̂, then so is the scale-transformed spectrum

pλ (w,w∗) = λ γ+1 p(λw,λw∗), zλ (w,w∗) = λ γ+1z(λw,λw∗), (6.1)

for any positive λ . Thus solutions come in one-parameter families. The steady-state

however is expected to be unique, and this implies that it must be scale invariant,

which in turn implies that it must be of the power-law form

p(w,w∗) = w
−γ−1
∗ fp(w/w∗) and z(w,w∗) = w

−γ−1
∗ fz(w/w∗) (6.2)

for some scaling functions fp and fz. These scaling functions were calculated explic-

itly in earlier sections and depend on some details of the model, but the power-law
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form of the abundances follows directly from the scale-invariance of the model and

is insensitive to other details.

Note that the scaling discussed here, where rates and abundances can be expressed

in terms of scaling functions of the ratio of individual size to characteristic size of the

species, has also been employed in [23]. It is different from the scaling discussed in

[7] that scales size and area.

The viewpoint that the crucial property of the aquatic ecosystem is its scale in-

variance was previously taken in [13], where a scale-invariant model for the fish part

of the spectrum was presented. That paper did not model the dynamics of the plank-

ton part of the spectrum but simply assumed that it was given by a power-law. The

plankton model in this paper can be combined with the fish model in [13] to give a

dynamic scale-invariant model of the entire spectrum. What remains to be done is to

explain why evolution, presented with the opportunity to fill a physical environment

that itself exhibits scale invariance over many orders of magnitude, like an ocean or

a large lake, would evolve organisms that preserve this scale invariance to a great

degree.

7 Discussion and Conclusions

Traditionally, size-based models for the population dynamics of unicellular organ-

isms concentrate either on cell-level processes like cell growth and cell division to

describe the size distribution of cells within a species [19,17,27,28,20], or they con-

centrate on population-level processes like predator-prey interactions to describe the

abundance distribution across species of different characteristic size [40,22,3,4,58,

45,5,63]. We have introduced a model that does both simultaneously: it resolves

the distribution of cell sizes within a species and the distribution of biomass across

species and thereby allows us to start from individual-level processes and their allo-

metric scaling and from them derive population level phenomena like the power-law

Sheldon spectrum. The only other works of a similar nature that we are aware of are

[23] and [48].

At the cell level, our model combines a von Bertalanffy cell growth model with a

flexible cell division model. This cell division model allows a sloppy size control, so

that division can occur for a wide range of sizes. In addition, the two daughter cells do

not necessarily have equal size but instead are described by a size distribution. Even

though this is quite a general model for cell growth and cell division, we were able

to give exact analytic solutions for the steady state cell size distribution. This is novel

and may be useful also for studying size distributions of cells other than plankton

cells. We also worked with an idealised version of the cell cycle (cells split into two

identical daughter cells once they exactly double their size) in parallel to the more

realistic model to show that the main conclusions of our paper do not depend on the

details of the division model.

The most important aspect of our model is the coupling of the growth of a predator

cell to the death of a smaller prey cell. This makes the cell growth rate depend on the

abundance of prey and the cell death rate depend on the abundance of predators,

leading to a non-linear model. It is remarkable that, in spite of this non-linearity, this
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coupling together of cells of all species allows an exact steady-state solution giving

the size distributions for a continuum of coexisting species.

The model has the property that, at steady state, the coexistence of multiple uni-

cellular plankton species and the Sheldon power-law size spectrum are two different

manifestations of just one single phenomenon —‘two sides of the same coin’. This

conclusion rests very much on the allometry of the four rates involved: the growth

rates of phyto- and zooplankton, the death rate, and the predation kernel. The first

and last of these allometries are supported by empirical data and have specified al-

lometric exponents. However, the allometries of the zooplankton growth and death

rates have to emerge from the predator-prey interactions at steady state, and are tech-

nical outcomes of our modelling. In summary, one can assume in the model any one

of the following properties: (a) allometry of the rates, (b) coexistence of multiple

species, and (c) a power-law community size spectrum. Then, from this, the other

two properties can be derived.

While we have been able to show analytically in this paper that the model pre-

dicts a coexistence steady state that agrees with the Sheldon spectrum, we have not

discussed the stability of this steady state against small perturbations. Due to the com-

plicated form of the steady state solution, an analytic stability analysis is not feasible.

We have therefore performed the numerical calculations and have reported on them in

a less analytically demanding paper [35]. The numerical results show that additional

stabilising terms, like for example an extra density dependence of the predation rate,

need to be added to the model to stabilise the steady state. This is in agreement with

observations in [38, section 4.2]. As those stabilising terms are reduced, the system

undergoes a Hopf bifurcation during which the steady-state becomes unstable and the

new attractor is an oscillatory state describing waves of biomass moving up the size

spectrum. When averaged over time, these oscillations average out to a power-law

abundance.

Our analytical model presented in this paper is trait-based rather than species-

based, which means that, rather than taking a finite set of species, it uses a continuum

of species distinguished by a continuous trait variable, in our case the maximum size

of a cell of that species. All analytical results in this paper very much rely on the ex-

istence of this continuum of species, which is clearly an idealisation of a real aquatic

ecosystem that can only contain a finite set of species. In that case the community

abundance can never be an exact power law, and therefore also the resulting allomet-

ric scaling can not be exact. One may wonder whether the qualitative results of this

paper will continue to apply.

To test that, we have carried out numerical simulations of a version of the model

[35] with a finite number of species. A single zooplankton species feeding on an as-

semblage of twenty phytoplankton species drives its phytoplankton prey to very low

densities while on the path to extinction itself, leaving a community far from being

described by a Sheldon spectrum. However, increasing the number of zooplankton

species to nine, distributed over a range of characteristic cell sizes, leads to a com-

munity closer to a Sheldon spectrum. This is because with more zooplankton species

there is a closer approximation to the scaling needed for predation mortality in the

prey, in conjunction with the scaling needed for growth in the predator. Moreover, the

steady state is locally asymptotically stable. This is quite different from the results on
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random matrices [39,1] which have been interpreted in ecology as making it less

likely for a community to be stable as species-richness and connectance increase.

Ecologists have looked extensively for more realistic network structures that could

counter such instability in complex communities, e.g. [41,42,43,32,31]. Our results

in [35] suggest that stable, unicellular, ecological networks with Sheldon-like struc-

ture cannot be achieved unless enough species are present to generate approximations

to the scalings in predation.

In previous models investigating the continuous coexistence of species, e.g., [25,

51], it had been found that even when a model has a coexistence steady state that is

dynamically stable, this steady state is unstable against any small structural change

to the model, and regions of exclusion develop in trait space in which no species

can exist. However, the results in [35] show that our model does not suffer from

this structural instability. When we go from the exact power- law death and growth

rates of the continuous model to the approximate power-law in the presence of a

finite number of species, the steady-state remains stable and the abundance of these

species still approximately follows the Sheldon spectrum power law. How much of

this structural stability is due to the extra density dependence in the predation rate and

how much of it is due to the fact that we explicitly model the growth of individuals

whereas previous works assumed that all individuals of a species had the same size,

remains to be investigated.

Our model works with a single trait variable. It ignores all other characteristics

that distinguish different species, except whether it is an autotroph or a heterotroph.

Clearly the model could be made more realistic by also distinguishing between differ-

ent functional types, for example between diatoms and dinoflagelates. Also, it would

be easy to include mixotrophs without changing the conclusions of our model. How-

ever we wanted our model to be the simplest conceptual model that clarifies how

coexistence on a Sheldon spectrum emerges. For the same reason, we included only

a single resource described by a very simple equation, whereas in reality the resource

dynamics are complicated and very seasonal.

One question that we have not addressed in this paper is the reason for the ob-

served allometric scaling of the phytoplankton growth rate and the predation rate.

As these are at the basis of our derivation of coexistence and the Sheldon spectrum,

finding an explanation for them would be very interesting. The allometry of the phy-

toplankton growth rate may possibly be imposed by physical constraints. Allometric

scaling has been studied a lot over the last 30 years, starting with the classics [11,10,

52] and with important contributions by [64,8,6,34] and many others.

The predation kernel, on the other hand, combines two ingredients: a preferred

prey size and a foraging term. Although there may also be physical constraints for

the latter, both ingredients are to a great extend behavioural —hence subject to evo-

lution. Take the preference for a prey size, for instance. It is hard to believe that if

the abundance of the preferred prey is seriously depleted the predator will not adapt

its consumption habits to keep a sufficient food supply. We believe that, instead of an

input, the predation kernel should be an emergent feature, consequence of an under-

lying evolutionary principle that guides efficient predation habits. We have to leave

this interesting question for the future.
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A Check of scale-invariance of steady-state equations

In this appendix we will verify our claim that the pair of functions

pλ (w,w∗) = λ γ+1 p(λw,λw∗), zλ (w,w∗) = λ γ+1z(λw,λw∗), (A.1)

where

γ = 1+ν +ξ , (A.2)

solve steady state equations provided the original functions p(w,w∗), z(w,w∗) do for the same nutrient

value N̂.

The steady state equations, obtained by setting the time derivative to zero in the dynamical equations

(2.10) for p(w,w∗), (5.4) for z(w,w∗), and (5.20) for N̂ are

∂

∂w

[

Gp(w,w∗)p(w,w∗)
]

=2

∫ w∗

0
Q(w|w′)K(w′,w∗)p(w′,w∗)dw′

−K(w,w∗)p(w,w∗)−M(w,w∗)p(w,w∗). (A.3)

∂

∂w

[

Gz(w,w∗)z(w,w∗)
]

=2

∫

∞

0
Q(w|w′)Kz(w

′,w∗)z(w
′,w∗)dw′

−Kz(w,w∗)z(w,w∗)−M(w,w∗)z(w,w∗), (A.4)

ρ̂(N̂) =σ̂(N̂, p). (A.5)

To check that pλ (w,w∗), zλ (w,w∗) solve these equations we simply substitute them. Let us start with (A.3)

and consider each term individually. The left-hand side gives

∂

∂w
[Gp(w,w∗)pλ (w,w∗)] =

∂

∂w

[

Gp(w,w∗)λ
γ+1 p(λw,λw∗)

]

= λ
∂

∂ (λw)

[

λ ξ−1Gp(λw,λw∗)λ
γ+1 p(λw,λw∗)

]

= λ γ+1+ξ ∂

∂ (λw)
[Gp(λw,λw∗)p(λw,λw∗)] ,

(A.6)

where we used the scaling property (2.6) of the growth rate Gp(w,w∗). The first term on the right-hand

side of (A.3) gives

2

∫ w∗

0
Q(w|w′)K(w′,w∗)pλ (w

′,w∗)dw′

= 2

∫ λw∗

0
λQ(λw|λw′)λ ξ K(λw′,λw∗)λ

γ+1 p(λw′,λw∗)λ−1d(λw′)

= λ γ+1+ξ 2

∫ λw∗

0
Q(λw|λw′)K(λw′,λw∗)p(λw′,λw∗)d(λw′),

(A.7)

where we used the scaling properties (2.8) and (3.5). The second term gives

−K(w,w∗)pλ (w,w∗) =−λ ξ K(λw,λw∗)λ
γ+1 p(λw,λw∗)

=−λ γ+1+ξ K(λw,λw∗)p(λw,λw∗)
(A.8)
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again due to the scaling property (3.5) of the division rate. Finally, using the expression (5.2) for the

mortality rate, the last term gives

−M(w,w∗)pλ (w,w∗) =−

[

∫

∞

0
S(w′,w)

∫

∞

0
zλ (w

′,w′
∗)dw′

∗ dw′+w
−ξ
∗ mb(w/w∗)

]

pλ (w,w∗)

=−
[

∫

∞

0
λ−ν S(λw′,λw)

∫

∞

0
λ γ+1z(λw′,λw′

∗)λ−1d(λw′
∗)λ−1d(λw′)

+λ ξ (λw∗)
−ξ mb(λw/λw∗)

]

λ γ+1 p(λw,λw∗)

=−λ γ+1+ξ M(λw,λw∗)pλ (λw,λw∗).

(A.9)

We substituted both pλ and zλ , used the scaling property of the predation rate S(w,w′) that follows from

Eq.(5.1) and the relation (A.2) between the exponents.

Putting these four terms back together, we see that the resulting equation is the same as the original

equation evaluated at scaled weights λw and λw∗, up to an overall factor of λ γ+1+ξ . Given that the

original equation holds for all weights w and w∗, this shows that the transformed equation is equivalent to

the original one, establishing its scale invariance.

In the equation (A.4) for the zooplankton abundance the left-hand side involves the zooplankton

growth rate given in Eq. (5.5) and we first determine its behaviour when pλ and zλ replace the original

functions:

Gz(w,w∗) =
∫

∞

0
S(w,w′)εw′

[

∫

∞

0
(pλ (w

′,w′
∗)+ zλ (w

′,w′
∗))dw′

∗

]

dw′−bw
1−ξ
∗

(

w

w∗

)β

=
∫

∞

0
λ−ν S(λw,λw′)ελ−1(λw′)

[

∫

∞

0
λ γ+1(p(λw′,λw′

∗)+ z(λw′,λw′
∗))λ

−1d(λw′
∗)

]

λ−1d(λw′)

−bλ−1+ξ (λw∗)
1−ξ

(

λw

λw∗

)β

= λ ξ−1Gz(λw,λw∗).

(A.10)

Thus under the scale transformation the left-hand side of the zooplankton equation (A.4) becomes

∂

∂w

[

λ ξ−1Gz(λw,λw∗)λ
γ+1z(λw,λw∗)

]

= λ γ+1+ξ ∂

∂ (λw)
[Gz(λw,λw∗)z(λw,λw∗)] . (A.11)

The terms on the right-hand side transform just like those in the phytoplantkon equation. So again we find

that the transformed equation is the same as the original equation at rescaled weights up to an overall factor

of λ γ+1+ξ .

Finally, in the renormalised resource equation (A.5) the left-hand side does not depend on weights or

plankton abundances, so is invariant under the scale transformation. The right hand side transforms to

σ̂(N̂, pλ ) = lim

â(N̂)
θ

∫ wmax
wmin

w
1−α−ξ
∗

∫ w∗
0 wα pλ (w,w∗)dwdw∗

∫ wmax
wmin

w
1−ξ−γ
∗ dw∗

= lim

â(N̂)
θ

∫ λwmax

λwmin
λ−1+α+ξ (λw∗)

1−α−ξ
∫ λw∗

0 λ−α (λw)α λ γ+1 p(λw,λw∗)λ
−1d(λw)λ−1d(λw∗)

∫ λwmax

λwmin
λ−1+ξ+γ (λw∗)1−ξ−γ λ−1d(λw∗)

= σ̂(N̂, p)

(A.12)

and thus is also invariant, meaning the entire equation is invariant. This completes the proof that all the

steady-state equations are scale-invariant.
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