6 research outputs found

    Genome-wide diversity and global migration patterns in dromedaries follow ancient caravan routes

    Get PDF
    Dromedaries have been essential for the prosperity of civilizations in arid environments and the dispersal of humans, goods and cultures along ancient, cross-continental trading routes. With increasing desertification their importance as livestock species is rising rapidly, but little is known about their genome-wide diversity and demographic history. As previous studies using few nuclear markers found weak phylogeographic structure, here we detected fine-scale population differentiation in dromedaries across Asia and Africa by adopting a genome-wide approach. Global patterns of effective migration rates revealed pathways of dispersal after domestication, following historic caravan routes like the Silk and Incense Roads. Our results show that a Pleistocene bottleneck and Medieval expansions during the rise of the Ottoman empire have shaped genome-wide diversity in modern dromedaries. By understanding subtle population structure we recognize the value of small, locally adapted populations and appeal for securing genomic diversity for a sustainable utilization of this key desert species

    Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary

    Get PDF
    Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species’ range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the “restocking from the wild” hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments

    Tracing worldwide Turkey genetic diversity using D-loop sequence mitochondrial DNA analysis

    No full text
    According to recent archeological evidence, turkey (Meleagris gallopavo gallopavo) domestication may have occurred in Mexico around 2000 years ago. However, little is known about the phylogenetic and genealogical background underlying domestic turkey populations. This study aimed to further understand the domestication process and identify inter-or intraspecific connections between turkey populations to determine their origins, trace their global expansion, and define the species’ genetic value. Ninety-three domestic turkeys (local breeds) were sampled from populations in Brazil, Mexico, USA, Spain, Italy, Iran, and Egypt. Publicly available sequences from previous studies were also included. Standard mitochondrial DNA, genetic diversity, and haplotype network analyses were performed. Seventy-six polymorphic sites were identified. Turkeys from Mexico showed the greatest number of polymorphic sites (40), while turkeys from Italy and Brazil reported only one site each. Nucleotide diversity was also highest in Mexico and the USA (π = 0.0175 and 0.0102, respectively) and lowest in Brazil and Italy. Of the six major haplogroups defined, the Mexican and USA populations appeared to have remained more stable and diverse than the other populations. This may be due to conservative husbandry policies in the rural areas of other populations, which have prevented the introduction of commercial turkey lines

    Design and development of a multiplex microsatellite panel for the genetic characterisation and diversity assessment of domestic turkey (Meleagris gallopavo gallopavo)

    Get PDF
    Domestic turkey production generally utilises only a few genetically improved lines, and local breeds are severely endangered as a result. Furthermore, the genetic resources of domestic turkeys have not been properly investigated, which could, ultimately, lead to the extinction of local breeds and negatively affect their corresponding genetic diversity and environmental adaptation. Although, several microsatellite markers have been designed for mapping and quantitative trait locus analysis, there is no standard panel of markers for genetic characterisation or genetic diversity assessment. Accordingly, the present study aimed to develop a set of polymorphic microsatellite markers that could be used for international turkey population studies. Thirty-nine microsatellites were selected based on polymorphism, DNA sequence and chromosome position, as well as on amplification efficiency, success rate and the absence of nonspecific amplification. The markers were screened using 105 DNA samples from local turkey breeds from Mexico, the United States, Italy, Brazil, Egypt and Spain. A total of 401 alleles were identified, with a mean number of alleles per marker of 10.28 ± 4.25. All microsatellites were polymorphic, with at least four alleles and no more than 19 alleles. Furthermore, allelic richness ranged from 3.810 to 17.985, mean heterozygosity ranged from 0.452 ± 0.229 to 0.667 ± 0.265, polymorphic information content values ranged from 0.213 (MNT264) to 0.850 (RHT0024) and the mean Fis value was 0.322. Overall, the panel was highly polymorphic and exhibited moderate Hardy–Weinberg disequilibrium, thereby indicating its value as a tool for biodiversity and population structure studies that could play an important role in promoting the conservation of local turkey breeds.Highlights Important genetic resources reside within indigenous turkey populations. These are linked to historic heritage production values and breeds. It is important to preserve this heritage and genetic diversity, which threatens to be lost as production systems focus on production characteristics. Microsatellite markers, even though, they are now replaced by single nucleotide polymorphism automatic genotyping platforms in many fields of genetics, remain a viable alternative thanks to their cheapness and simplicity of study which makes them particularly useful when the population to be studied lacks information of the prior genetic structure

    Data from: Ancient and modern DNA reveal dynamics of domestication and cross-continental dispersal of the dromedary

    No full text
    Dromedaries have been fundamental to the development of human societies in arid landscapes and for long-distance trade across hostile hot terrains for 3,000 y. Today they continue to be an important livestock resource in marginal agro-ecological zones. However, the history of dromedary domestication and the influence of ancient trading networks on their genetic structure have remained elusive. We combined ancient DNA sequences of wild and early-domesticated dromedary samples from arid regions with nuclear microsatellite and mitochondrial genotype information from 1,083 extant animals collected across the species’ range. We observe little phylogeographic signal in the modern population, indicative of extensive gene flow and virtually affecting all regions except East Africa, where dromedary populations have remained relatively isolated. In agreement with archaeological findings, we identify wild dromedaries from the southeast Arabian Peninsula among the founders of the domestic dromedary gene pool. Approximate Bayesian computations further support the “restocking from the wild” hypothesis, with an initial domestication followed by introgression from individuals from wild, now-extinct populations. Compared with other livestock, which show a long history of gene flow with their wild ancestors, we find a high initial diversity relative to the native distribution of the wild ancestor on the Arabian Peninsula and to the brief coexistence of early-domesticated and wild individuals. This study also demonstrates the potential to retrieve ancient DNA sequences from osseous remains excavated in hot and dry desert environments
    corecore