12,437 research outputs found

    Synthetic Lorentz force in classical atomic gases via Doppler effect and radiation pressure

    Get PDF
    We theoretically predict a novel type of synthetic Lorentz force for classical (cold) atomic gases, which is based on the Doppler effect and radiation pressure. A fairly uniform and strong force can be constructed for gases in macroscopic volumes of several cubic millimeters and more. This opens the possibility to mimic classical charged gases in magnetic fields, such as those in a tokamak, in cold atom experiments.Comment: are welcom

    Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    Full text link
    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.Comment: are welcom

    Precision measurements in nuclear {\beta}-decay with LPCTrap

    Full text link
    The experimental achievements and the current program with the LPCTrap device installed at the LIRAT beam line of the SPIRAL1-GANIL facility are presented. The device is dedicated to the study of the weak interaction at low energy by means of precise measurements of the {\beta}-{\nu} angular correlation parameter. Technical aspects as well as the main results are reviewed. The future program with new available beams is briefly discussed.Comment: Annalen der Physik (2013

    Glucosinolates in plant protection strategies: A review

    Get PDF
    This review discusses the importance of glucosinolates in plant protection. The Brassicaceae, which are cultivated worldwide, use glucosinolates and their decomposition products to defend themselves against attacks by harmful organisms. The glucosinolate content varies among individual plant species, plant organs and developmental stages. The glucosinolate content in plants is also affected by biotic and abiotic factors, while the type or quantity of glucosinolate determines the susceptibility of the plants to insect pests. These facts can pose a problem when implementing this knowledge in cultivation of the Brassicaceae, especially in regions with moderate climates where Brassicaceae crops are exposed to attacks by a large number of harmful organisms. Under these circumstances, it is essential to research new, or to improve the existing environmentally acceptable methods of protecting Brassicaceae plants against economically important pests

    Detecting swift heavy ion irradiation effects with graphene

    Full text link
    In this paper we show how single layer graphene can be utilized to study swift heavy ion (SHI) modifications on various substrates. The samples were prepared by mechanical exfoliation of bulk graphite onto SrTiO3_3, NaCl and Si(111), respectively. SHI irradiations were performed under glancing angles of incidence and the samples were analysed by means of atomic force microscopy in ambient conditions. We show that graphene can be used to check whether the irradiation was successful or not, to determine the nominal ion fluence and to locally mark SHI impacts. In case of samples prepared in situ, graphene is shown to be able to catch material which would otherwise escape from the surface.Comment: 10 pages, 3 figure

    R-groups for unitary principal series of Spin groups

    Get PDF

    Theory of multiwave mixing and decoherence control in qubit array system

    Full text link
    We develop a theory to analyze the decoherence effect in a charged qubit array system with photon echo signals in the multiwave mixing configuration. We present how the decoherence suppression effect by the {\it bang-bang} control with the π\pi pulses can be demonstrated in laboratory by using a bulk ensemble of exciton qubits and optical pulses whose pulse area is even smaller than π\pi. Analysis is made on the time-integated multiwave mixing signals diffracted into certain phase matching directions from a bulk ensemble. Depending on the pulse interval conditions, the cross over from the decoherence acceleration regime to the decoherence suppression regime, which is a peculiar feature of the coherent interaction between a qubit and the reservoir bosons, may be observed in the time-integated multiwave mixing signals in the realistic case including inhomogeneous broadening effect. Our analysis will successfully be applied to precise estimation of the reservoir parameters from experimental data of the direction resolved signal intensities obtained in the multiwave mixing technique.Comment: 19 pages, 11 figure

    Pulse Control of Decoherence in a Qubit Coupled with a Quantum Environment

    Full text link
    We study the time evolution of a qubit linearly coupled with a quantum environment under a sequence of short pi pulses. Our attention is focused on the case where qubit-environment interactions induce the decoherence with population decay. We assume that the environment consists of a set of bosonic excitations. The time evolution of the reduced density matrix for the qubit is calculated in the presence of periodic short pi pulses. We confirm that the decoherence is suppressed if the pulse interval is shorter than the correlation time for qubit-environment interactions.Comment: 5 pages, 2figure
    corecore