Synthetic magnetism in cold atomic gases opened the doors to many exciting
novel physical systems and phenomena. Ubiquitous are the methods used for the
creation of synthetic magnetic fields. They include rapidly rotating
Bose-Einstein condensates employing the analogy between the Coriolis and the
Lorentz force, and laser-atom interactions employing the analogy between the
Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure -
being one of the most common forces induced by light - has not yet been used
for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz
force, based on the radiation pressure and the Doppler effect, by observing the
centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the
velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel
concept is straightforward to implement in a large volume, for a broad range of
velocities, and can be extended to different geometries.Comment: are welcom