9 research outputs found

    RĂ©gulation de la symbiose endomycorhizienne par le phosphate

    Get PDF
    La majoritĂ© des plantes terrestres forme une symbiose racinaire avec des champignons mycorhiziens Ă  arbuscules. Une forte fertilisation phosphatĂ©e est capable d'inhiber trĂšs fortement la mycorhization avant mĂȘme l'attachement du champignon Ă  l'Ă©piderme racinaire. Cette inhibition reliĂ©e aux teneurs en phosphate (P) dans les parties aĂ©riennes fait intervenir une signalisation systĂ©mique. Parmi les mĂ©canismes rĂ©gulateurs hypothĂ©tiques, la part des exsudats racinaires en particulier des strigolactones a Ă©tĂ© Ă©tudiĂ©e. Nous concluons que des mĂ©canismes additionnels au niveau de la racine elle-mĂȘme doivent exister. De plus, nos rĂ©sultats indiquent que le P n'influence pas les oscillations calciques mesurĂ©es dans les racines suite au contact du champignon (ou Ă  la perception d'exsudats fongiques). Enfin, nous montrons que le P affecte l'expression de gĂšnes vĂ©gĂ©taux connus comme normalement induits en rĂ©ponse Ă  des signaux symbiotiques, indiquant que le P pourrait modifier la capacitĂ© des plantes Ă  rĂ©pondre correctement Ă  la prĂ©sence du champignon symbiotique.Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi. High phosphate fertilization strongly inhibits the establishment of this symbiosis, prior to the attachment of fungal hyphae to the root epidermis. This inhibition is linked to shoot phosphate contents and involves a systemic regulation. Among hypothetical regulatory mechanisms, the importance of root exudates and particularly strigolactones was investigated. We conclude that additional regulatory mechanisms likely exist at the level of the root itself. Moreover, our results indicate that P does not influence calcium-spiking responses measured in root cells upon contact with fungal hyphae (or after treatment with fungal exudates). Finally, we show that P affects the expression of plant genes known to be induced in response to symbiotic signals, indicating that P could alter the plant's ability to respond to the presence of the symbiotic fungus

    The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events

    Get PDF
    Most plants form root symbioses with arbuscular mycorrhizal (AM) fungi, which provide them with phosphate and other nutrients. High soil phosphate levels are known to affect AM symbiosis negatively, but the underlying mechanisms are not understood. This report describes experimental conditions which triggered a novel mycorrhizal phenotype under high phosphate supply: the interaction between pea and two different AM fungi was almost completely abolished at a very early stage, prior to the formation of hyphopodia. As demonstrated by split-root experiments, down-regulation of AM symbiosis occurred at least partly in response to plant-derived signals. Early signalling events were examined with a focus on strigolactones, compounds which stimulate pre-symbiotic fungal growth and metabolism. Strigolactones were also recently identified as novel plant hormones contributing to the control of shoot branching. Root exudates of plants grown under high phosphate lost their ability to stimulate AM fungi and lacked strigolactones. In addition, a systemic down-regulation of strigolactone release by high phosphate supply was demonstrated using split-root systems. Nevertheless, supplementation with exogenous strigolactones failed to restore root colonization under high phosphate. This observation does not exclude a contribution of strigolactones to the regulation of AM symbiosis by phosphate, but indicates that they are not the only factor involved. Together, the results suggest the existence of additional early signals that may control the differentiation of hyphopodia

    High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus.

    Get PDF
    International audienceThe arbuscular mycorrhizal symbiosis associates soil fungi with the roots of the majority of plants species and represents a major source of soil phosphorus acquisition. Mycorrhizal interactions begin with an exchange of molecular signals between the two partners. A root signaling pathway is recruited, for which the perception of fungal signals triggers oscillations of intracellular calcium concentration. High phosphate availability is known to inhibit the establishment and/or persistence of this symbiosis, thereby favoring the direct, non-symbiotic uptake of phosphorus by the root system. In this study, Medicago truncatula plants were used to investigate the effects of phosphate supply on the early stages of the interaction. When plants were supplied with high phosphate fungal attachment to the roots was drastically reduced. An experimental system was designed to individually study the effects of phosphate supply on the fungus, on the roots, and on root exudates. These experiments revealed that the most important effects of high phosphate supply were on the roots themselves, which became unable to host mycorrhizal fungi even when these had been appropriately stimulated. The ability of the roots to perceive their fungal partner was then investigated by monitoring nuclear calcium spiking in response to fungal signals. This response did not appear to be affected by high phosphate supply. In conclusion, high levels of phosphate predominantly impact the plant host, but apparently not in its ability to perceive the fungal partner

    Metabolite profiling of pea roots in response to phosphate availability

    No full text
    The arbuscular mycorrhizal (AM) symbiosis is a mutualistic association between soil fungi (Glomeromycota) and roots of most plant species. A recent study showed that high phosphate fertilization could inhibit mycorrhizal colonization at a very early stage, before hyphopodium formation. The authors proposed that inhibiting and/or stimulatory compounds might be present in roots grown under high phosphate or low phosphate, respectively. To further address this question, we performed metabolite profiling analyses of extracts of pea roots grown under low and high phosphate concentrations. Ultra high performance liquid chromatography (UHPLC) was coupled with high resolution (HR) mass spectrometry (Q-TOF) and multivariate statistical analysis. This allowed the detection of 34 ions discriminating the two conditions. A majority (28 ions) were more abundant in roots grown under low phosphate concentration, and among them four were specific of this condition. The results suggest that the regulation of AM symbiosis by phosphate may involve the synthesis or accumulation of stimulatory compounds in roots grown under low phosphate

    Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone

    No full text
    International audienceThe primary objective of this study was to identify the molecular signals present in arbuscular mycorrhizal (AM) germinated spore exudates (GSEs) responsible for activating nuclear Ca2+ spiking in the Medicago truncatula root epidermis. Medicagotruncatula root organ cultures (ROCs) expressing a nuclear-localized cameleon reporter were used as a bioassay to detect AM-associated Ca2+ spiking responses and LC-MS to characterize targeted molecules in GSEs. This approach has revealed that short-chain chitin oligomers (COs) can mimic AM GSE-elicited Ca2+ spiking, with maximum activity observed for CO4 and CO5. This spiking response is dependent on genes of the common SYM signalling pathway (DMI1/DMI2) but not on NFP, the putative Sinorhizobium meliloti Nod factor receptor. A major increase in the CO4/5 concentration in fungal exudates is observed when Rhizophagus irregularis spores are germinated in the presence of the synthetic strigolactone analogue GR24. By comparison with COs, both sulphated and nonsulphated Myc lipochito-oligosaccharides (LCOs) are less efficient elicitors of Ca2+ spiking in M.truncatula ROCs. We propose that short-chain COs secreted by AM fungi are part of a molecular exchange with the host plant and that their perception in the epidermis leads to the activation of a SYM-dependent signalling pathway involved in the initial stages of fungal root colonization

    Two ecotype-related long non-coding RNAs in the environmental control of root growth

    No full text
    Background Root architecture varies widely between species and even between ecotypes of the same species despite the strong conservation of the protein-coding portion of their genomes. In contrast, non-coding RNAs evolved rapidly between ecotypes and may control their differential responses to the environment as several long non-coding RNAs (lncRNAs) can quantitatively regulate gene expression.Results Roots from Columbia (Col) and Landsberg erecta (Ler) ecotypes respond differently to phosphate starvation. We compared complete transcriptomes (mRNAs, lncRNAs and small RNAs) of root tips from these two ecotypes during early phosphate starvation. We identified thousands of new lncRNAs categorized as intergenic or antisense RNAs that were largely conserved at DNA level in these ecotypes. In contrast to coding genes, many lncRNAs were specifically transcribed in one ecotype and/or differentially expressed between ecotypes independently of the phosphate condition. These ecotype-related lncRNAs were characterized by analyzing their sequence variability among plants and their link with siRNAs. Our analysis identified 675 lncRNAs differentially expressed between the two ecotypes including specific antisense RNAs targeting key regulators of root growth responses. Mis-regulation of several intergenic lncRNAs showed that at least two ecotype-related lncRNAs regulate primary root growth in Col.Conclusions The in depth exploration of the non-coding transcriptome of two ecotypes identified thousands of new lncRNAs showing specific expression in root apexes. De-regulation of two ecotype-related lncRNAs revealed a new pathway involved in the regulation of primary root growth. The non-coding genome may reveal novel mechanisms involved in ecotype adaptation of roots to different soil environments

    Landscape of the Noncoding Transcriptome Response of Two Arabidopsis Ecotypes to Phosphate Starvation

    No full text
    International audienceThousands of lncRNAs with ecotype-specific expression, including two that likely regulate primary root growth, are potentially linked to the evolution of regulatory mechanisms among ecotypes.Root architecture varies widely between species; it even varies between ecotypes of the same species, despite strong conservation of the coding portion of their genomes. By contrast, noncoding RNAs evolve rapidly between ecotypes and may control their differential responses to the environment, since several long noncoding RNAs (lncRNAs) are known to quantitatively regulate gene expression. Roots from ecotypes Columbia and Landsbergerectaof Arabidopsis (Arabidopsis thaliana) respond differently to phosphate starvation. Here, we compared transcriptomes (mRNAs, lncRNAs, and small RNAs) of root tips from these two ecotypes during early phosphate starvation. We identified thousands of lncRNAs that were largely conserved at the DNA level in these ecotypes. In contrast to coding genes, many lncRNAs were specifically transcribed in one ecotype and/or differentially expressed between ecotypes independent of phosphate availability. We further characterized these ecotype-related lncRNAs and studied their link with small interfering RNAs. Our analysis identified 675 lncRNAs differentially expressed between the two ecotypes, including antisense RNAs targeting key regulators of root-growth responses. Misregulation of several lincRNAs showed that at least two ecotype-related lncRNAs regulate primary root growth in ecotype Columbia. RNA-sequencing analysis following deregulation of lncRNA NPC48 revealed a potential link with root growth and transport functions. This exploration of the noncoding transcriptome identified ecotype-specific lncRNA-mediated regulation in root apexes. The noncoding genome may harbor further mechanisms involved in ecotype adaptation of roots to different soil environments

    Low phosphate activates STOP1-ALMT1 to rapidly inhibit root cell elongation

    No full text
    International audienceEnvironmental cues profoundly modulate cell proliferation and cell elongation to inform and direct plant growth and development. External phosphate (Pi) limitation inhibits primary root growth in many plant species. However, the underlying Pi sensory mechanisms are unknown. Here we genetically uncouple two Pi sensing pathways in the root apex of Arabidopsis thaliana. First, the rapid inhibition of cell elongation in the transition zone is controlled by transcription factor STOP1, by its direct target, ALMT1, encoding a malate channel, and by ferroxidase LPR1, which together mediate Fe and peroxidase-dependent cell wall stiffening. Second, during the subsequent slow inhibition of cell proliferation in the apical meristem, which is mediated by LPR1-dependent, but largely STOP1–ALMT1-independent, Fe and callose accumulate in the stem cell niche, leading to meristem reduction. Our work uncovers STOP1 and ALMT1 as a signalling pathway of low Pi availability and exuded malate as an unexpected apoplastic inhibitor of root cell wall expansion
    corecore