306 research outputs found
Introduction to Configuration Path Integral Monte Carlo
In low-temperature high-density plasmas quantum effects of the electrons are
becoming increasingly important. This requires the development of new
theoretical and computational tools. Quantum Monte Carlo methods are among the
most successful approaches to first-principle simulations of many-body quantum
systems. In this chapter we present a recently developed method---the
configuration path integral Monte Carlo (CPIMC) method for moderately coupled,
highly degenerate fermions at finite temperatures. It is based on the second
quantization representation of the -particle density operator in a basis of
(anti-)symmetrized -particle states (configurations of occupation numbers)
and allows to tread arbitrary pair interactions in a continuous space.
We give a detailed description of the method and discuss the application to
electrons or, more generally, Coulomb-interacting fermions. As a test case we
consider a few quantum particles in a one-dimensional harmonic trap. Depending
on the coupling parameter (ratio of the interaction energy to kinetic energy),
the method strongly reduces the sign problem as compared to direct path
integral Monte Carlo (DPIMC) simulations in the regime of strong degeneracy
which is of particular importance for dense matter in laser plasmas or compact
stars. In order to provide a self-contained introduction, the chapter includes
a short introduction to Metropolis Monte Carlo methods and the second
quantization of quantum mechanics.Comment: chapter in book "Introduction to Complex Plasmas: Scientific
Challenges and Technological Opportunities", Michael Bonitz, K. Becker, J.
Lopez and H. Thomsen (Eds.) Springer Series "Atomic, Optical and Plasma
Physics", vol. 82, Springer 2014, pp. 153-194 ISBN: 978-3-319-05436-0 (Print)
978-3-319-05437-7 (Online
Gas turbulence modulation in a two-fluid model for gas-solid flows
Recent rapid progress in the theoretical and experimental study of turbulence modulation has led to greater understanding of the physics of particle-gas turbulence interactions. A new two-fluid model incorporating these advances for relatively dilute gas-solid flows containing high-inertia particles is established. The effect of aerodynamic forces upon the particulate stresses is considered in this kinetic theory-based model, and the influence of the particles on the turbulent gas is addressed: the work associated with drag forces contributes to the gas turbulent energy, and the space occupied by particles restricts the turbulent length scale. The interparticle length scale, which is usually ignored, has been incorporated into a new model for determining the turbulent length scale. This model also considers the transport effect on the turbulent length scale. Simulation results for fully developed steady flows in vertical pipes are compared with a wide range of published experimental data and, generally, good agreement is shown. This comprehensive and validated model accounts for many of the interphase interactions that have been shown to be important
Variations in water use by a mature mangrove of Avicennia germinans, French Guiana
In the tropical intertidal zones, little is known on water uptake by mangroves. Transpiration rates are generally measured at leaf level, but few studies exist on water use at tree or stand levels. The objective of this study was to measure sap flow in trees of different sizes to appreciate the range of variation in water use that may exist in a site dominated by 80% mature Avicennia germinans. The results showed that from the dry to the wet season the mean water use increased from 3.2 to 5.3 dm3 dβ1 in small trees (DBH βΌ 13 cm), from 11.5 to 30.8 dm3 dβ1 in medium trees (βΌ24 cm) and from 40.8 to 64.1 dm3 dβ1 in large ones (βΌ45 cm). Sapwood remained active up to a depth of 8 cm with radial variations within the stem. Weak correlations were obtained with VPD and net radiation. This study confirmed that transpiration was larger under low levels of salinity. Water use at stand level (βΌ1900 living stems haβ1) was estimated to be in the range of 5.8 to 11.8 m3 haβ1 dβ1 according to the season
Determinants of mRNA recognition and translation regulation by Lin28
Lin28 is critical for stem cell maintenance and is also associated with advanced human malignancies. Our recent genome-wide studies mark Lin28 as a master post-transcriptional regulator of a subset of messenger RNAs important for cell growth and metabolism. However, the molecular basis underpinning the selective mRNA target regulation is unclear. Here, we provide evidence that Lin28 recognizes a unique motif in multiple target mRNAs, characterized by a small but critical βAβ bulge flanked by two G:C base pairs embedded in a complex secondary structure. This motif mediates Lin28-dependent stimulation of translation. As Lin28 is also known to inhibit the biogenesis of a cohort of miRNAs including let-7, we propose that Lin28 binding to different RNA types (precursor miRNAs versus mRNAs) may facilitate recruitment of different co-factors, leading to distinct regulatory outcomes. Our findings uncover a putative yet unexpected motif that may constitute a mechanistic base for the multitude of functions regulated by Lin28 in both stem cells and cancer cells
ExploRing Persistence in Financial Time Series
Edited by W. HΓ€rdle, Z. HlΓ‘vka, and S. Klinke</p
Cloning, purification and characterisation of a recombinant purine nucleoside phosphorylase from Bacillus halodurans Alk36
A purine nucleoside phosphorylase from the alkaliphile Bacillus halodurans Alk36 was cloned and overexpressed in Escherichia coli. The enzyme was purified fivefold by membrane filtration and ion exchange. The purified enzyme had a Vmax of 2.03Β ΓΒ 10β9 sΒ β1 and a Km of 206Β ΞΌM on guanosine. The optimal pH range was between 5.7 and 8.4 with a maximum at pH 7.0. The optimal temperature for activity was 70Β°C and the enzyme had a half life at 60Β°C of 20.8Β h
lin-28 Controls the Succession of Cell Fate Choices via Two Distinct Activities
lin-28 is a conserved regulator of cell fate succession in animals. In Caenorhabditis elegans, it is a component of the heterochronic gene pathway that governs larval developmental timing, while its vertebrate homologs promote pluripotency and control differentiation in diverse tissues. The RNA binding protein encoded by lin-28 can directly inhibit let-7 microRNA processing by a novel mechanism that is conserved from worms to humans. We found that C. elegans LIN-28 protein can interact with four distinct let-7 family pre-microRNAs, but in vivo inhibits the premature accumulation of only let-7. Surprisingly, however, lin-28 does not require let-7 or its relatives for its characteristic promotion of second larval stage cell fates. In other words, we find that the premature accumulation of mature let-7 does not account for lin-28's precocious phenotype. To explain let-7's role in lin-28 activity, we provide evidence that lin-28 acts in two steps: first, the let-7βindependent positive regulation of hbl-1 through its 3β²UTR to control L2 stage-specific cell fates; and second, a let-7βdependent step that controls subsequent fates via repression of lin-41. Our evidence also indicates that let-7 functions one stage earlier in C. elegans development than previously thought. Importantly, lin-28's two-step mechanism resembles that of the heterochronic gene lin-14, and the overlap of their activities suggests a clockwork mechanism for developmental timing. Furthermore, this model explains the previous observation that mammalian Lin28 has two genetically separable activities. Thus, lin-28's two-step mechanism may be an essential feature of its evolutionarily conserved role in cell fate succession
Perioperative echocardiography-guided hemodynamic therapy in high-risk patients:a practical expert approach of hemodynamically focused echocardiography
The number of high-risk patients undergoing surgery is growing. To maintain adequate hemodynamic functioning as well as oxygen delivery to the vital organs (DO2) amongst this patient population, a rapid assessment of cardiac functioning is essential for the anesthesiologist. Pinpointing any underlying cardiovascular pathophysiology can be decisive to guide interventions in the intraoperative setting. Various techniques are available to monitor the hemodynamic status of the patient, however due to intrinsic limitations, many of these methods may not be able to directly identify the underlying cause of cardiovascular impairment. Hemodynamic focused echocardiography, as a rapid diagnostic method, offers an excellent opportunity to examine signs of filling impairment, cardiac preload, myocardial contractility and the function of the heart valves. We thus propose a 6-step-echocardiographic approach to assess high-risk patients in order to improve and maintain perioperative DO2. The summary of all echocardiographic based findings allows a differentiated assessment of the patient's cardiovascular function and can thus help guide a (patho)physiological-orientated and individualized hemodynamic therapy
Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo
<p>Abstract</p> <p>Background</p> <p>Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression.</p> <p>Methods</p> <p>Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2.</p> <p>Results</p> <p>We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate.</p> <p>Conclusions</p> <p>Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.</p
DNA Methyltransferase Controls Stem Cell Aging by Regulating BMI1 and EZH2 through MicroRNAs
Epigenetic regulation of gene expression is well known mechanism that regulates cellular senescence of cancer cells. Here we show that inhibition of DNA methyltransferases (DNMTs) with 5-azacytidine (5-AzaC) or with specific small interfering RNA (siRNA) against DNMT1 and 3b induced the cellular senescence of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) and increased p16INK4A and p21CIP1/WAF1 expression. DNMT inhibition changed histone marks into the active forms and decreased the methylation of CpG islands in the p16INK4A and p21CIP1/WAF1 promoter regions. Enrichment of EZH2, the key factor that methylates histone H3 lysine 9 and 27 residues, was decreased on the p16INK4A and p21CIP1/WAF1 promoter regions. We found that DNMT inhibition decreased expression levels of Polycomb-group (PcG) proteins and increased expression of microRNAs (miRNAs), which target PcG proteins. Decreased CpG island methylation and increased levels of active histone marks at genomic regions encoding miRNAs were observed after 5-AzaC treatment. Taken together, DNMTs have a critical role in regulating the cellular senescence of hUCB-MSCs through controlling not only the DNA methylation status but also active/inactive histone marks at genomic regions of PcG-targeting miRNAs and p16INK4A and p21CIP1/WAF1 promoter regions
- β¦