324 research outputs found

    Analysis of Aerosols

    Get PDF
    Atmospheric aerosols have recently attracted considerable attention due to their effects on climate, atmospheric chemistry, and health. This interest has triggered a variety of activities including the development of new analytical methods for a better characterization of atmospheric aerosol particles, some of which are presented here. Emphasis is laid on the description of methods for on-line and in situ analysis, since the analysis of many processes requires a good time resolution, and since in situ analysis methods are less prone to sampling artefacts

    Changes in ozone and PM2.5 in Europe during the period of 1990-2030 : Role of reductions in land and ship emissions

    Get PDF
    Air pollution is among the top threats to human health and ecosystems despite the substantial decrease in anthropogenic emissions. Meanwhile, the role of ship emissions on air quality is becoming increasingly important with the growing maritime transport and less strict regulations. In this study, we modeled the air quality in Europe between 1990 and 2030 with ten-year intervals, using the regional air quality model CAMx version 6.50, to investigate the changes in the past (1990-2010) as well as the effects of different land and ship emission scenarios in the future (2020,2030). The modeled mean ozone levels decreased slightly during the first decade but then started increasing again especially in polluted areas. Results from the future scenarios suggest that by 2030 the peak ozone would decrease, leading to a decrease in the days exceeding the maximum daily 8-h average ozone (MDA8) limit values (60 ppb) by 51% in southern Europe relative to 1990. The model results show a decrease of 56% (6.3 mu g m(-3)) in PM2.5 concentrations from 1990 to 2030 under current legislation, mostly due to a large drop in sulfate (representing up to 44% of the total PM2.5 decrease during 1990-2000) while nitrate concentrations were predicted to go down with an increasing rate (10% of total PM2.5 decrease during 1990-2000 while 36% during 2020-2030). The ship emissions if reduced according to the maximum technically feasible reduction (MTFR) scenario were predicted to contribute up to 19% of the decrease in the PM2.5 concentrations over land between 2010 and 2030. Ship emission reductions according to the MTFR scenario would lead to a decrease in the days with MDA8 exceeding EU limits by 24-28% (10-14 days) around the coastal regions. The results obtained in our study show the increasing importance of ship emission reductions, after a relatively large decrease in land emissions was achieved in Europe. (c) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Black Carbon Contribution to the Aerosol Phase and its Scavenged Fraction in Mixed Phase Clouds at the High Alpine Site Jungfraujoch (3580m asl)

    Get PDF
    The mass fraction of black carbon (BC) in the atmospheric aerosol and its mixing state are important for the direct aerosol climate effect. These properties also determine if BC is incorporated into cloud hydrometeors (i.e. droplets and ice crystals) and are important because the microphysical and optical properties of the cloud are altered (indirect aerosol effect). Measurements were performed during several Cloud and Aerosol Characterization Experiments, in winter 2004 (CLACE3), summer 2004 (CLACE3.5), winter 2005 (CLACE4) and summer 2005 (CLACE4.5) at the high Alpine research station Jungfraujoch (3580 m asl)

    Grand challenges for aerosol science and technology

    Get PDF
    The Grand Challenges Workshop for Aerosol Science and Technology was organized for the International Aerosol Conference (IAC), in St Louis, September 2–7, 2018. The purpose of the workshop was to identify “Grand Challenges” for aerosol science and technology in the next decade and thereby indicate a viable research road map for the aerosol community

    Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030

    Get PDF
    The focus of this modeling study is on the role of ammonia in European air quality in the past as well as in the future. Ammonia emissions have not decreased as much as the other secondary inorganic aerosol (SIA) precursors – nitrogen oxides (NOx) and sulfur dioxide (SO2) – since the 1990s and are still posing problems for air quality and the environment. In this study, air quality simulations were performed with a regional chemical transport model at decadal intervals between 1990 and 2030 to understand the changes in the chemical species associated with SIA under varying land and ship emissions. We analyzed the changes in air concentrations of ammonia, nitric acid, ammonium, particulate nitrate and sulfate as well as changes in the dry and wet deposition of ammonia and ammonium. The results show that the approximately 40 % decrease in SIA concentrations between 1990 and 2010 was mainly due to reductions in NOx and SO2 emissions. The ammonia concentrations on the other hand decreased only near the high-emission areas such as the Netherlands and northern Italy by about 30 %, while there was a slight increase in other parts of Europe. Larger changes in concentrations occurred mostly during the first period (1990–2000). The model results indicate a transition period after 2000 for the composition of secondary inorganic aerosols due to a larger decrease in sulfate concentrations than nitrate. Changes between 2010 and 2030 – assuming the current legislation (CLE) scenario – are predicted to be smaller than those achieved earlier for all species analyzed in this study. The scenario simulations suggest that if ship emissions will be regulated more strictly in the future, SIA formation will decrease especially around the Benelux area, North Sea, Baltic Sea, English Channel and the Mediterranean region, leaving more ammonia in the gas phase, which would lead to an increase in dry deposition. In the north of the domain, the decrease in SIA would be mainly due to reduced formation of particulate nitrate, while the change around the Mediterranean would be caused mainly by decreased sulfate aerosol concentrations. One should also keep in mind that potentially higher temperatures in the future might increase the evaporation of ammonium nitrate to form its gaseous components NH3 and HNO3. Sensitivity tests with reduced NOx and NH3 emissions indicate a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.The focus of this modeling study is on the role of ammonia in European air quality in the past as well as in the future Ammonia emissions have not decreased as much as the other secondary inorganic aerosol (SIA) precursors - nitrogen oxides (NOx) and sulfur dioxide (SO2) - since the 1990s and are still posing problems for air quality and the environment. In this study, air quality simulations were performed with a regional chemical transport model at decadal intervals between 1990 and 2030 to understand the changes in the chemical species associated with SIA under varying land and ship emissions. We analyzed the changes in air concentrations of ammonia, nitric acid, ammonium, particulate nitrate and sulfate as well as changes in the dry and wet deposition of ammonia and ammonium. The results show that the approximately 40 % decrease in SIA concentrations between 1990 and 2010 was mainly due to reductions in NOx and SO2 emissions. The ammonia concentrations on the other hand decreased only near the high-emission areas such as the Netherlands and northern Italy by about 30 %, while there was a slight increase in other parts of Europe. Larger changes in concentrations occurred mostly during the first period (1990-2000). The model results indicate a transition period after 2000 for the composition of secondary inorganic aerosols due to a larger decrease in sulfate concentrations than nitrate. Changes between 2010 and 2030 - assuming the current legislation (CLE) scenario - are predicted to be smaller than those achieved earlier for all species analyzed in this study. The scenario simulations suggest that if ship emissions will be regulated more strictly in the future, SIA formation will decrease especially around the Benelux area, North Sea, Baltic Sea, English Channel and the Mediterranean region, leaving more ammonia in the gas phase, which would lead to an increase in dry deposition. In the north of the domain, the decrease in SIA would be mainly due to reduced formation of particulate nitrate, while the change around the Mediterranean would be caused mainly by decreased sulfate aerosol concentrations. One should also keep in mind that potentially higher temperatures in the future might increase the evaporation of ammonium nitrate to form its gaseous components NH3 and HNO3. Sensitivity tests with reduced NOx and NH3 emissions indicate a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.Peer reviewe

    Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra

    No full text
    International audienceSubmicron ambient aerosol was characterized in summer 2005 at an urban background site in Zurich, Switzerland, during a three-week measurement campaign. Highly time-resolved samples of non-refractory aerosol components were analyzed with an Aerodyne aerosol mass spectrometer (AMS). Positive matrix factorization (PMF) was used for the first time for AMS data to identify the main components of the total organic aerosol and their sources. The PMF retrieved factors were compared to measured reference mass spectra and were correlated with tracer species of the aerosol and gas phase measurements from collocated instruments. Six factors were found to explain virtually all variance in the data and could be assigned either to sources or to aerosol components such as oxygenated organic aerosol (OOA). Our analysis suggests that at the measurement site only a small (1 originates from freshly emitted fossil fuel combustion. Other primary sources identified to be of similar or even higher importance are charbroiling (10?15%) and wood burning (~10%), along with a minor source interpreted to be influenced by food cooking (6%). The fraction of all identified primary sources is considered as primary organic aerosol (POA). This interpretation is supported by calculated ratios of the modelled POA and measured primary pollutants such as elemental carbon (EC), NOx, and CO, which are in good agreement to literature values. A high fraction (60?69%) of the measured organic aerosol mass is OOA which is interpreted mostly as secondary organic aerosol (SOA). This oxygenated organic aerosol can be separated into a highly aged fraction, OOA I, (40?50%) with low volatility and a mass spectrum similar to fulvic acid, and a more volatile and probably less processed fraction, OOA II (on average 20%). This is the first publication of a multiple component analysis technique to AMS organic spectral data and also the first report of the OOA II component

    Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    Get PDF
    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles

    Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and analysis of the events during the years 2001 and 2002

    No full text
    International audienceScattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580 m a.s.l.). From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo is usually positive, it becomes negative during Saharan dust events (SDE) due to the greater size of the mineral aerosols and to their different chemical composition. This change in the sign of the single scattering exponent turns out to be a simple means for detecting Saharan dust events. The occurrence of SDE detected by this new method was largely confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22 months period shows that SDE are more frequent during the March?June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5 h with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48 h total suspended particulate matter (TSP) at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the JFJ is 16 ?g/m3, which corresponds to an annual mean of 0.8 ?g/m3 or 24% of TSP

    Non-linear photochemical pathways in laser induced atmospheric aerosol formation

    Get PDF
    We measured the chemical composition and the size distribution of aerosols generated by femtosecond-Terawatt laser pulses in the atmosphere using an aerosol mass spectrometer (AMS). We show that nitric acid condenses in the form of ammonium nitrate, and that oxidized volatile organics also contribute to particle growth. These two components account for two thirds and one third, respectively, of the dry laser-condensed mass. They appear in two different modes centred at 380 nm and 150 nm. The number concentration of particles between 25 and 300 nm increases by a factor of 15. Pre-existing water droplets strongly increase the oxidative properties of the laser-activated atmosphere, substantially enhancing the condensation of organics under laser illumination.Comment: 19 pages, 5 figure
    • …
    corecore