86 research outputs found

    Polymerization of misfolded Z alpha-1 antitrypsin protein lowers CX3CR1 expression in human PBMCs

    Get PDF
    Expression levels of CX3CR1 (C-X3-C motif chemokine receptor 1) on immune cells have significant importance in maintaining tissue homeostasis under physiological and pathological conditions. The factors implicated in the regulation of CX3CR1 and its specific ligand CX3CL1 (fractalkine) expression remain largely unknown. Recent studies provide evidence that host's misfolded proteins occurring in the forms of polymers or amyloid fibrils can regulate CX3CR1 expression. Herein, a novel example demonstrates that polymers of human ZZ alpha-1 antitrypsin (Z-AAT) protein, resulting from its conformational misfolding due to the Z (G1u342Lys) mutation in SERPINA1 gene, strongly lower CX3CR1 mRNA expression in human peripheral blood mononuclear cells (PBMCs). This parallels with increase of intracellular levels of CX3CR1 and Z-AAT proteins. Presented data indicate the involvement of the CX3CR1 pathway in the Z-AAT-related disorders and further support the role of misfolded proteins in CX3CR1 regulation.Pathogenesis and treatment of chronic pulmonary disease

    Cerebrospinal Fluid Space Alterations in Melancholic Depression

    Get PDF
    Melancholic depression is a biologically homogeneous clinical entity in which structural brain alterations have been described. Interestingly, reports of structural alterations in melancholia include volume increases in Cerebro-Spinal Fluid (CSF) spaces. However, there are no previous reports of CSF volume alterations using automated whole-brain voxel-wise approaches, as tissue classification algorithms have been traditionally regarded as less reliable for CSF segmentation. Here we aimed to assess CSF volumetric alterations in melancholic depression and their clinical correlates by means of a novel segmentation algorithm (‘new segment’, as implemented in the software Statistical Parametric Mapping-SPM8), incorporating specific features that may improve CSF segmentation. A three-dimensional Magnetic Resonance Image (MRI) was obtained from seventy patients with melancholic depression and forty healthy control subjects. Although imaging data were pre-processed with the ‘new segment’ algorithm, in order to obtain a comparison with previous segmentation approaches, tissue segmentation was also performed with the ‘unified segmentation’ approach. Melancholic patients showed a CSF volume increase in the region of the left Sylvian fissure, and a CSF volume decrease in the subarachnoid spaces surrounding medial and lateral parietal cortices. Furthermore, CSF increases in the left Sylvian fissure were negatively correlated with the reduction percentage of depressive symptoms at discharge. None of these results were replicated with the ‘unified segmentation’ approach. By contrast, between-group differences in the left Sylvian fissure were replicated with a non-automated quantification of the CSF content of this region. Left Sylvian fissure alterations reported here are in agreement with previous findings from non-automated CSF assessments, and also with other reports of gray and white matter insular alterations in depressive samples using automated approaches. The reliable characterization of CSF alterations may help in the comprehensive characterization of brain structural abnormalities in psychiatric samples and in the development of etiopathogenic hypotheses relating to the disorders

    Reversible Disruption of Pre-Pulse Inhibition in Hypomorphic-Inducible and Reversible CB1-/- Mice

    Get PDF
    Although several genes are implicated in the pathogenesis of schizophrenia, in animal models for such a severe mental illness only some aspects of the pathology can be represented (endophenotypes). Genetically modified mice are currently being used to obtain or characterize such endophenotypes. Since its cloning and characterization CB1 receptor has increasingly become of significant physiological, pharmacological and clinical interest. Recently, its involvement in schizophrenia has been reported. Among the different approaches employed, gene targeting permits to study the multiple roles of the endocannabinoid system using knockout (-/-) mice represent a powerful model but with some limitations due to compensation. To overcome such a limitation, we have generated an inducible and reversible tet-off dependent tissue-specific CB1-/- mice where the CB1R is re-expressed exclusively in the forebrain at a hypomorphic level due to a mutation (IRh-CB1-/-) only in absence of doxycycline (Dox). In such mice, under Dox+ or vehicle, as well as in wild-type (WT) and CB1-/-, two endophenotypes motor activity (increased in animal models of schizophrenia) and pre-pulse inhibition (PPI) of startle reflex (disrupted in schizophrenia) were analyzed. Both CB1-/- and IRh-CB1-/- showed increased motor activity when compared to WT animals. The PPI response, unaltered in WT and CB1-/- animals, was on the contrary highly and significantly disrupted only in Dox+ IRh-CB1-/- mice. Such a response was easily reverted after either withdrawal from Dox or haloperidol treatment. This is the first Inducible and Reversible CB1-/- mice model to be described in the literature. It is noteworthy that the PPI disruption is not present either in classical full CB1-/- mice or following acute administration of rimonabant. Such a hypomorphic model may provide a new tool for additional in vivo and in vitro studies of the physiological and pathological roles of cannabinoid system in schizophrenia and in other psychiatric disorders

    Microstructural Abnormalities in Subcortical Reward Circuitry of Subjects with Major Depressive Disorder

    Get PDF
    Previous studies of major depressive disorder (MDD) have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN), and medial forebrain bundle (MFB).We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI) in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA) values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression

    Cortisol, cognition and the ageing prefrontal cortex

    Get PDF
    The structural and functional decline of the ageing human brain varies by brain region, cognitive function and individual. The underlying biological mechanisms are poorly understood. One potentially important mechanism is exposure to glucocorticoids (GCs; cortisol in humans); GC production is increasingly varied with age in humans, and chronic exposure to high levels is hypothesised to result in cognitive decline via cerebral remodelling. However, studies of GC exposure in humans are scarce and methodological differences confound cross-study comparison. Furthermore, there has been little focus on the effects of GCs on the frontal lobes and key white matter tracts in the ageing brain. This thesis therefore examines relationships among cortisol levels, structural brain measures and cognitive performance in 90 healthy, elderly community-dwelling males from the Lothian Birth Cohort 1936. Salivary cortisol samples characterised diurnal (morning and evening) and reactive profiles (before and after a cognitive test battery). Structural variables comprised Diffusion Tensor Imaging measures of major brain tracts and a novel manual parcellation method for the frontal lobes. The latter was based on a systematic review of current manual methods in the context of putative function and cytoarchitecture. Manual frontal lobe brain parcellation conferred greater spatial and volumetric accuracy when compared to both single- and multi-atlas parcellation at the lobar level. Cognitive ability was assessed via tests of general cognitive ability, and neuropsychological tests thought to show differential sensitivity to the integrity of frontal lobe sub-regions. The majority of, but not all frontal lobe test scores shared considerable overlap with general cognitive ability, and cognitive scores correlated most consistently with the volumes of the anterior cingulate. This is discussed in light of the diverse connective profile of the cingulate and a need to integrate information over more diffuse cognitive networks according to proposed de-differentiation or compensation in ageing. Individuals with higher morning, evening or pre-test cortisol levels showed consistently negative relationships with specific regional volumes and tract integrity. Participants whose cortisol levels increased between the start and end of cognitive testing showed selectively larger regional volumes and lower tract diffusivity (correlation magnitudes <.44). The significant relationships between cortisol levels and cognition indicated that flatter diurnal slopes or higher pre-test levels related to poorer test performance. In contrast, higher levels in the morning generally correlated with better scores (correlation magnitudes <.25). Interpretation of all findings was moderated by sensitivity to type I error, given the large number of comparisons conducted. Though there were limited candidates for mediation analysis, cortisol-function relationships were partially mediated by tract integrity (but not sub-regional frontal volumes) for memory and post-error slowing. This thesis offers a novel perspective on the complex interplay among glucocorticoids, cognition and the structure of the ageing brain. The findings suggest some role for cortisol exposure in determining age-related decline in complex cognition, mediated via brain structure

    A Comparison of Neuroimaging Abnormalities in Multiple Sclerosis, Major Depression and Chronic Fatigue Syndrome (Myalgic Encephalomyelitis): is There a Common Cause?

    Get PDF
    corecore