7 research outputs found

    Microsomal prostaglandin E synthase-1 is involved in the metabolic and cardiovascular alterations associated with obesity

    Get PDF
    Background and Purpose: Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E2 production in inflammatory con ditions. We evaluated the role of mPGES-1 in the development and the metabolic and cardiovascular alterations of obesity. Experimental Approach: mPGES-1+/+ and mPGES-1 / mice were fed with normal or high fat diet (HFD, 60% fat). The glycaemic and lipid profile was evaluated by glu cose and insulin tolerance tests and colorimetric assays. Vascular function, structure and mechanics were assessed by myography. Histological studies, q-RT-PCR, and western blot analyses were performed in adipose tissue depots and cardiovascular tissues. Gene expression in abdominal fat and perivascular adipose tissue (PVAT) from patients was correlated with vascular damage. Key Results: Male mPGES-1 / mice fed with HFD were protected against body weight gain and showed reduced adiposity, better glucose tolerance and insulin sensi tivity, lipid levels and less white adipose tissue and PVAT inflammation and fibrosis, compared with mPGES-1+/+ mice. mPGES-1 knockdown prevented cardiomyocyte hypertrophy, cardiac fibrosis, endothelial dysfunction, aortic insulin resistance, and vascular inflammation and remodelling, induced by HFD. Obesity-induced weight gain and endothelial dysfunction of resistance arteries were ameliorated in female mPGES-1 / mice. In humans, we found a positive correlation between mPGES-1 expression in abdominal fat and vascular remodelling, vessel stiffness, and systolic blood pressure. In human PVAT, there was a positive correlation between mPGES-1 expression and inflammatory markers. Conclusions and Implications: mPGES-1 inhibition might be a novel therapeutic approach to the management of obesity and the associated cardiovascular and meta bolic alterations

    Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm

    Get PDF
    Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms.Fondo de Investigacion Sanitaria del Instituto de Salud Carlos III (PI16/188, PI19/855), the European Regional D evelopment Fund, and the European Commission through H2020-EU.1.1, European Research Council grant ERC-2016-StG 715322-EndoMitTalk, and Gobierno de Espana SAF2016-80305P. This work was partially supported by Comunidad de Madrid (S2017/BMD 3867 RENIM-CM) and cofinanced by the European Structural and Investment Fund. M.M. is supported by the Miguel Servet Program (CP 19/014, Fundacion de Investigacion del Hospital 12 de Octubr

    HIV-related lymphoma in a public hospital in Chile. Analysis of 55 cases Linfoma relacionado a infección por virus de la inmunodeficiencia humana en un hospital público de Santiago, Chile

    No full text
    Background: Cancer is the third cause of death in patients infected with human immunodefi ciency virus (HIV) and lymphoma is the most common type. Aim: To describe the clinical characteristics, histology, risk factors and prognosis of these patients, in a Chilean public hospital in Chile. Material and Methods: Records of 55 patients (45 males) aged between 23 and 67 years with lymphoma and HIV positive serology, diagnosed between 1992-2008, were reviewed. Results: Six patients (11%) had Hodgkin lymphoma (HL) and the rest, non-Hodgkin lymphoma (NHL). B-cell phenotype constituted 83.7% of NHL cases. The most common subtypes of all the lymphoma were diffuse large B cell lymphoma in 24 cases (43.6%), Burkitt lymphoma in 12 cases (21.8%), and plasmablastic lymphoma in 5 cases (9.1%). Thirty fi ve patients (64%) underwent curative intended chemotherapy (CT) concomitantly with highly active antiretroviral therapy (HAART). Three year survival of the whole cohort was 27%. By multivariate analy

    Microsomal prostaglandin E synthase-1 (mPGES-1) is involved in the metabolic and cardiovascular alterations associated with obesity

    Get PDF
    Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible isomerase responsible for prostaglandin E2 production in inflammatory conditions. We evaluated the role of mPGES-1 in obesity development and in the metabolic and cardiovascular alterations associated.mPGES-1+/+ and mPGES-1-/- mice were fed with normal or high fat diet (HFD, 60% fat). The glycaemic and lipid profile was studied by glucose and insulin tolerance tests and colorimetric assays. Vascular function, structure and mechanics were evaluated by myography. Histological studies, q-RT-PCR and Western Blot analyses were performed in adipose tissue depots and cardiovascular tissues. Gene expression in abdominal fat and perivascular adipose tissue (PVAT) from patients and its correlation with vascular damage was determined.Male mPGES-1-/- mice fed with HFD were protected against body weight gain and showed reduced adiposity, better glucose tolerance and insulin sensitivity, lipid levels and less white adipose tissue and PVAT inflammation and fibrosis, compared to mPGES-1+/+ mice. mPGES-1 knockdown prevented cardiomyocyte hypertrophy, cardiac fibrosis, endothelial dysfunction, aortic insulin resistance, and vascular inflammation and remodeling, induced by HFD. Obesity-induced weight gain and endothelial dysfunction of resistance arteries were ameliorated in female mPGES-1-/- mice. In humans, we found a positive correlation between mPGES-1 expression in abdominal fat and vascular remodeling, vessel stiffness and systolic blood pressure. In human PVAT, there was a positive correlation between mPGES-1 expression and inflammatory markers.mPGES-1 inhibition might be a novel therapeutic approach for the management of obesity and the associated cardiovascular and metabolic alterationsThis work was supported by the Ministerio de Ciencia e Innovación and Fondo Europeo de Desarrollo Regional (FEDER)/FSE (SAF2016-80305P), Instituto de Salud Carlos III (ISCIII; FIS PI18/0257); Comunidad de Madrid (CM) (B2017/BMD-3676 AORTASANA) FEDER-a way to build Europe. MGA was supported by a FPI-UAM fellowship, RRD by a Juan de la Cierva contract (IJCI-2017-31399). The authors thank Victor Gutierrez his help with some experiment

    The Synthetic Flavonoid Hidrosmin Improves Endothelial Dysfunction and Atherosclerotic Lesions in Diabetic Mice

    No full text
    In diabetes, chronic hyperglycemia, dyslipidemia, inflammation and oxidative stress contribute to the progression of macro/microvascular complications. Recently, benefits of the use of flavonoids in these conditions have been established. This study investigates, in two different mouse models of diabetes, the vasculoprotective effects of the synthetic flavonoid hidrosmin on endothelial dysfunction and atherogenesis. In a type 2 diabetes model of leptin-receptor-deficient (db/db) mice, orally administered hidrosmin (600 mg/kg/day) for 16 weeks markedly improved vascular function in aorta and mesenteric arteries without affecting vascular structural properties, as assessed by wire and pressure myography. In streptozotocin-induced type 1 diabetic apolipoprotein E-deficient mice, hidrosmin treatment for 7 weeks reduced atherosclerotic plaque size and lipid content; increased markers of plaque stability; and decreased markers of inflammation, senescence and oxidative stress in aorta. Hidrosmin showed cardiovascular safety, as neither functional nor structural abnormalities were noted in diabetic hearts. Ex vivo, hidrosmin induced vascular relaxation that was blocked by nitric oxide synthase (NOS) inhibition. In vitro, hidrosmin stimulated endothelial NOS activity and NO production and downregulated hyperglycemia-induced inflammatory and oxidant genes in vascular smooth muscle cells. Our results highlight hidrosmin as a potential add-on therapy in the treatment of macrovascular complications of diabetes

    Extracellular Tuning of Mitochondrial Respiration Leads to Aortic Aneurysm

    Get PDF
    BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. METHODS: Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1(c1039g/+)) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-Cre(ERT2)Tfam(flox/flox) mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. RESULTS: The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1(c1039g/+) mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1(c1039g/+) mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1(c1039g/+) mice. CONCLUSIONS: Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders
    corecore