931 research outputs found

    Analysis of Gamma Radiation from a Radon Source: Indications of a Solar Influence

    Full text link
    This article presents an analysis of about 29,000 measurements of gamma radiation associated with the decay of radon in a sealed container at the Geological Survey of Israel (GSI) Laboratory in Jerusalem between 28 January 2007 and 10 May 2010. These measurements exhibit strong variations in time of year and time of day, which may be due in part to environmental influences. However, time-series analysis reveals a number of periodicities, including two at approximately 11.2 year1^{-1} and 12.5 year1^{-1}. We have previously found these oscillations in nuclear-decay data acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB), and we have suggested that these oscillations are attributable to some form of solar radiation that has its origin in the deep solar interior. A curious property of the GSI data is that the annual oscillation is much stronger in daytime data than in nighttime data, but the opposite is true for all other oscillations. This may be a systematic effect but, if it is not, this property should help narrow the theoretical options for the mechanism responsible for decay-rate variability.Comment: 9 pages, 21 figure

    Bitangential interpolation in generalized Schur classes

    Full text link
    Bitangential interpolation problems in the class of matrix valued functions in the generalized Schur class are considered in both the open unit disc and the open right half plane, including problems in which the solutions is not assumed to be holomorphic at the interpolation points. Linear fractional representations of the set of solutions to these problems are presented for invertible and singular Hermitian Pick matrices. These representations make use of a description of the ranges of linear fractional transformations with suitably chosen domains that was developed in a previous paper.Comment: Second version, corrected typos, changed subsection 5.6, 47 page

    BKB\to K Transition Form Factor up to O(1/mb2){\cal O}(1/m^2_b) within the kTk_T Factorization Approach

    Full text link
    In the paper, we apply the kTk_T factorization approach to deal with the BKB\to K transition form factor F+,0BK(q2)F^{B\to K}_{+,0}(q^2) in the large recoil regions. The B-meson wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B that include the three-particle Fock states' contributions are adopted to give a consistent PQCD analysis of the form factor up to O(1/mb2){\cal O} (1/m^2_b). It has been found that both the wave functions ΨB\Psi_B and ΨˉB\bar\Psi_B can give sizable contributions to the form factor and should be kept for a better understanding of the BB meson decays. Then the contributions from different twist structures of the kaon wavefunction are discussed, including the SUf(3)SU_f(3)-breaking effects. A sizable contribution from the twist-3 wave function Ψp\Psi_p is found, whose model dependence is discussed by taking two group of parameters that are determined by different distribution amplitude moments obtained in the literature. It is also shown that F+,0BK(0)=0.30±0.04F^{B\to K}_{+,0}(0)=0.30\pm0.04 and [F+,0BK(0)/F+,0Bπ(0)]=1.13±0.02[F^{B\to K}_{+,0}(0)/F^{B\to \pi}_{+,0}(0)]=1.13\pm0.02, which are more reasonable and consistent with the light-cone sum rule results in the large recoil regions.Comment: 22 pages and 6 figure

    αs\alpha_s from τ\tau decays: contour-improved versus fixed-order summation in a new QCD perturbation expansion

    Full text link
    We consider the determination of αs\alpha_s from τ\tau hadronic decays, by investigating the contour-improved (CI) and the fixed-order (FO) renormalization group summations in the frame of a new perturbation expansion of QCD, which incorporates in a systematic way the available information about the divergent character of the series. The new expansion functions, which replace the powers of the coupling, are defined by the analytic continuation in the Borel complex plane, achieved through an optimal conformal mapping. Using a physical model recently discussed by Beneke and Jamin, we show that the new CIPT approaches the true results with great precision when the perturbative order is increased, while the new FOPT gives a less accurate description in the regions where the imaginary logarithms present in the expansion of the running coupling are large. With the new expansions, the discrepancy of 0.024 in αs(mτ2)\alpha_s(m_\tau^2) between the standard CI and FO summations is reduced to only 0.009. From the new CIPT we predict αs(mτ2)=0.3200.009+0.011\alpha_s(m_\tau^2)= 0.320 ^{+0.011}_{-0.009}, which practically coincides with the result of the standard FOPT, but has a more solid theoretical basis

    Pinch Technique and the Batalin-Vilkovisky formalism

    Get PDF
    In this paper we take the first step towards a non-diagrammatic formulation of the Pinch Technique. In particular we proceed into a systematic identification of the parts of the one-loop and two-loop Feynman diagrams that are exchanged during the pinching process in terms of unphysical ghost Green's functions; the latter appear in the standard Slavnov-Taylor identity satisfied by the tree-level and one-loop three-gluon vertex. This identification allows for the consistent generalization of the intrinsic pinch technique to two loops, through the collective treatment of entire sets of diagrams, instead of the laborious algebraic manipulation of individual graphs, and sets up the stage for the generalization of the method to all orders. We show that the task of comparing the effective Green's functions obtained by the Pinch Technique with those computed in the background field method Feynman gauge is significantly facilitated when employing the powerful quantization framework of Batalin and Vilkovisky. This formalism allows for the derivation of a set of useful non-linear identities, which express the Background Field Method Green's functions in terms of the conventional (quantum) ones and auxiliary Green's functions involving the background source and the gluonic anti-field; these latter Green's functions are subsequently related by means of a Schwinger-Dyson type of equation to the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity.Comment: 45 pages, uses axodraw; typos corrected, one figure changed, final version to appear in Phys.Rev.

    Schur functions and their realizations in the slice hyperholomorphic setting

    Get PDF
    we start the study of Schur analysis in the quaternionic setting using the theory of slice hyperholomorphic functions. The novelty of our approach is that slice hyperholomorphic functions allows to write realizations in terms of a suitable resolvent, the so called S-resolvent operator and to extend several results that hold in the complex case to the quaternionic case. We discuss reproducing kernels, positive definite functions in this setting and we show how they can be obtained in our setting using the extension operator and the slice regular product. We define Schur multipliers, and find their co-isometric realization in terms of the associated de Branges-Rovnyak space

    Form Factors in the radiative pion decay

    Get PDF
    We perform an analysis of the form factors that rule the structure-dependent amplitude in the radiative pion decay. The resonance contributions to pion -> e nu_e gamma decays are computed through the proper construction of the vector and axial-vector form factors by setting the QCD driven asymptotic properties of the three-point Green functions VVP and VAP, and by demanding the smoothing of the form factors at high transfer of momentum. A comparison between theoretical and experimental determinations of the form factors is also carried out. We also consider and evaluate the role played by a non-standard tensor form factor. We conclude that, at present and due to the hadronic incertitudes, the search for New Physics in this process is not feasible.Comment: 14 pages, no figures. Typos corrected. Accepted for publication in The European Physical Journal

    Study of the radiative decay ϕηγ\phi \to \eta \gamma with CMD-2 detector

    Full text link
    Using the 1.9pb11.9 pb^{-1} of data collected with the CMD-2 detector at VEPP-2M the decay mode ϕηγ\phi \to \eta \gamma, ηπ+ππ0\eta \to \pi^+\pi^-\pi^0 has been studied. The obtained branching ratio is B(ϕηγ)=(1.18±0.03±0.06)\phi \to \eta \gamma) = (1.18 \pm 0.03 \pm 0.06) %.Comment: 13 pages, 5 figures, LaTex2e, to be published in Phys. Lett.

    The Determination of alpha_s from Tau Decays Revisited

    Full text link
    We revisit the determination of alpha_s(m_tau) using a fit to inclusive tau hadronic spectral moments in light of (1) the recent calculation of the fourth-order perturbative coefficient K_4 in the expansion of the Adler function, (2) new precision measurements from BABAR of e+e- annihilation cross sections, which decrease the uncertainty in the separation of vector and axial-vector spectral functions, and (3) improved results from BABAR and Belle on tau branching fractions involving kaons. We estimate that the fourth-order perturbative prediction reduces the theoretical uncertainty, introduced by the truncation of the series, by 20% with respect to earlier determinations. We discuss to some detail the perturbative prediction and show that the effect of the incomplete knowledge of the series is reduced by using the so-called contour-improved calculation, as opposed to fixed-order perturbation theory which manifests convergence problems. The corresponding theoretical uncertainties are studied at the tau and Z mass scales. Nonperturbative contributions extracted from the most inclusive fit are small, in agreement with earlier determinations. Systematic effects from quark-hadron duality violation are estimated with simple models and found to be within the quoted systematic errors. The fit gives alpha_s(m_tau) = 0.344 +- 0.005 +- 0.007, where the first error is experimental and the second theoretical. After evolution to M_Z we obtain alpha_s(M_Z) = 0.1212 +- 0.0005 +- 0.0008 +- 0.0005, where the errors are respectively experimental, theoretical and due to the evolution. The result is in agreement with the corresponding NNNLO value derived from essentially the Z width in the global electroweak fit. The alpha_s(M_Z) determination from tau decays is the most precise one to date.Comment: 22 pages, 7 figure
    corecore