473 research outputs found

    A new design for the CERN-Fr\'ejus neutrino Super Beam

    Full text link
    We present an optimization of the hadron focusing system for a low-energy high-intensity conventional neutrino beam (Super-Beam) proposed on the basis of the HP-SPL at CERN with a beam power of 4 MW and an energy of 4.5 GeV. The far detector would be a 440 kton Water Cherenkov detector (MEMPHYS) located at a baseline of 130 km in the Fr\'ejus site. The neutrino fluxes simulation relies on a new GEANT4 based simulation coupled with an optimization algorithm based on the maximization of the sensitivity limit on the θ13\theta_{13} mixing angle. A new configuration adopting a multiple horn system with solid targets is proposed which improves the sensitivity to θ13\theta_{13} and the CP violating phase δCP\delta_{CP}.Comment: 11 pages, 18 figures, 2 table

    Entanglement can increase asymptotic rates of zero-error classical communication over classical channels

    Full text link
    It is known that the number of different classical messages which can be communicated with a single use of a classical channel with zero probability of decoding error can sometimes be increased by using entanglement shared between sender and receiver. It has been an open question to determine whether entanglement can ever increase the zero-error communication rates achievable in the limit of many channel uses. In this paper we show, by explicit examples, that entanglement can indeed increase asymptotic zero-error capacity, even to the extent that it is equal to the normal capacity of the channel. Interestingly, our examples are based on the exceptional simple root systems E7 and E8.Comment: 14 pages, 2 figur

    Adaptive noise cancelling and time–frequency techniques for rail surface defect detection

    Get PDF
    Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles

    Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network

    Get PDF
    We have studied the performance of a new algorithm for electron/pion separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The software for separation consists of two parts: a shower reconstruction algorithm and a Neural Network that assigns to each reconstructed shower the probability to be an electron or a pion. The performance has been studied for the ECC of the OPERA experiment [1]. The e/πe/\pi separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data taken at CERN (pion beams) and at DESY (electron beams). The algorithm allows to achieve a 90% electron identification efficiency with a pion misidentification smaller than 1% for energies higher than 2 GeV

    First-principles study of the structural energetics of PdTi and PtTi

    Full text link
    The structural energetics of PdTi and PtTi have been studied using first-principles density-functional theory with pseudopotentials and a plane-wave basis. We predict that in both materials, the experimentally reported orthorhombic B19B19 phase will undergo a low-temperature phase transition to a monoclinic B19B19' ground state. Within a soft-mode framework, we relate the B19B19 structure to the cubic B2B2 structure, observed at high temperature, and the B19B19' structure to B19B19 via phonon modes strongly coupled to strain. In contrast to NiTi, the B19B19 structure is extremely close to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely transition mechanisms in the present case.Comment: 8 pages 5 figure

    Neutrino oscillation physics at an upgraded CNGS with large next generation liquid Argon TPC detectors

    Get PDF
    The determination of the missing Ue3U_{e3} element (magnitude and phase) of the PMNS neutrino mixing matrix is possible via the detection of \numu\to\nue oscillations at a baseline LL and energy EE given by the atmospheric observations, corresponding to a mass squared difference E/LΔm22.5×103eV2E/L \sim \Delta m^2\simeq 2.5\times 10^{-3} eV^2. While the current optimization of the CNGS beam provides limited sensitivity to this reaction, we discuss in this document the physics potential of an intensity upgraded and energy re-optimized CNGS neutrino beam coupled to an off-axis detector. We show that improvements in sensitivity to θ13\theta_{13} compared to that of T2K and NoVA are possible with a next generation large liquid Argon TPC detector located at an off-axis position (position rather distant from LNGS, possibly at shallow depth). We also address the possibility to discover CP-violation and disentangle the mass hierarchy via matter effects. The considered intensity enhancement of the CERN SPS has strong synergies with the upgrade/replacement of the elements of its injector chain (Linac, PSB, PS) and the refurbishing of its own elements, envisioned for an optimal and/or upgraded LHC luminosity programme.Comment: 37 pages, 20 figure

    Semileptonic BcB_c decays and Charmonium distribution amplitude

    Get PDF
    In this paper we study the semileptonic decays of the BcB_c meson in the Light-Cone Sum Rule (LCSR) approach. The result for each channel depends on the corresponding distribution amplitude of the final meson. For the case of BcB_c decaying into a pseudoscalar meson, to twist-3 accuracy only the leading twist distribution amplitude (DA) is involved if we start from a chiral current. If we choose a suitable chiral current in the vector meson case, the main twist-3 contributions are also eliminated and we can consider the leading twist contribution only. The leading twist distribution amplitudes of the charmonium and other heavy mesons are given by a model approach in the reasonable way. Employing this charmonium distribution amplitude we find the cross section σ(e+eJ/ψ+ηc)22.8fb\sigma(e^+e^-\to J/\psi+\eta_c)\simeq22.8 {fb} which is consistent with Belle and BaBar's data. Based on this model, we calculate the form factors for various BcB_c decay modes in the corresponding regions. Extrapolating the form factors to the whole kinetic regions, we get the decay widths and branching ratios for various BcB_c decay modes including their τ\tau modes when they are kinematically accessible.Comment: Changed content partially, Added references, 16 pages,2 figure

    Study of the radiative decay ϕηγ\phi \to \eta \gamma with CMD-2 detector

    Full text link
    Using the 1.9pb11.9 pb^{-1} of data collected with the CMD-2 detector at VEPP-2M the decay mode ϕηγ\phi \to \eta \gamma, ηπ+ππ0\eta \to \pi^+\pi^-\pi^0 has been studied. The obtained branching ratio is B(ϕηγ)=(1.18±0.03±0.06)\phi \to \eta \gamma) = (1.18 \pm 0.03 \pm 0.06) %.Comment: 13 pages, 5 figures, LaTex2e, to be published in Phys. Lett.

    Valence-quark distributions in the pion

    Get PDF
    We calculate the pion's valence-quark momentum-fraction probability distribution using a Dyson-Schwinger equation model. Valence-quarks with an active mass of 0.30 GeV carry 71% of the pion's momentum at a resolving scale q_0=0.54 GeV = 1/(0.37 fm). The shape of the calculated distribution is characteristic of a strongly bound system and, evolved from q_0 to q=2 GeV, it yields first, second and third moments in agreement with lattice and phenomenological estimates, and valence-quarks carrying 49% of the pion's momentum. However, pointwise there is a discrepancy between our calculated distribution and that hitherto inferred from parametrisations of extant pion-nucleon Drell-Yan data.Comment: 8 pages, 3 figures, REVTEX, aps.sty, epsfig.sty, minor corrections, version to appear in PR

    Anisotropy in granular media: classical elasticity and directed force chain network

    Full text link
    A general approach is presented for understanding the stress response function in anisotropic granular layers in two dimensions. The formalism accommodates both classical anisotropic elasticity theory and linear theories of anisotropic directed force chain networks. Perhaps surprisingly, two-peak response functions can occur even for classical, anisotropic elastic materials, such as triangular networks of springs with different stiffnesses. In such cases, the peak widths grow linearly with the height of the layer, contrary to the diffusive spreading found in `stress-only' hyperbolic models. In principle, directed force chain networks can exhibit the two-peak, diffusively spreading response function of hyperbolic models, but all models in a particular class studied here are found to be in the elliptic regime.Comment: 34 pages, 17 figures (eps), submitted to PRE, figures amended, partially to compare better to recent exp. wor
    corecore