473 research outputs found
A new design for the CERN-Fr\'ejus neutrino Super Beam
We present an optimization of the hadron focusing system for a low-energy
high-intensity conventional neutrino beam (Super-Beam) proposed on the basis of
the HP-SPL at CERN with a beam power of 4 MW and an energy of 4.5 GeV. The far
detector would be a 440 kton Water Cherenkov detector (MEMPHYS) located at a
baseline of 130 km in the Fr\'ejus site. The neutrino fluxes simulation relies
on a new GEANT4 based simulation coupled with an optimization algorithm based
on the maximization of the sensitivity limit on the mixing angle.
A new configuration adopting a multiple horn system with solid targets is
proposed which improves the sensitivity to and the CP violating
phase .Comment: 11 pages, 18 figures, 2 table
Entanglement can increase asymptotic rates of zero-error classical communication over classical channels
It is known that the number of different classical messages which can be
communicated with a single use of a classical channel with zero probability of
decoding error can sometimes be increased by using entanglement shared between
sender and receiver. It has been an open question to determine whether
entanglement can ever increase the zero-error communication rates achievable in
the limit of many channel uses. In this paper we show, by explicit examples,
that entanglement can indeed increase asymptotic zero-error capacity, even to
the extent that it is equal to the normal capacity of the channel.
Interestingly, our examples are based on the exceptional simple root systems E7
and E8.Comment: 14 pages, 2 figur
Adaptive noise cancelling and time–frequency techniques for rail surface defect detection
Adaptive noise cancelling (ANC) is a technique which is very effective to remove additive noises from the contaminated signals. It has been widely used in the fields of telecommunication, radar and sonar signal processing. However it was seldom used for the surveillance and diagnosis of mechanical systems before late of 1990s. As a promising technique it has gradually been exploited for the purpose of condition monitoring and fault diagnosis. Time-frequency analysis is another useful tool for condition monitoring and fault diagnosis purpose as time-frequency analysis can keep both time and frequency information simultaneously. This paper presents an ANC and time-frequency application for railway wheel flat and rail surface defect detection. The experimental results from a scaled roller test rig show that this approach can significantly reduce unwanted interferences and extract the weak signals from strong background noises. The combination of ANC and time-frequency analysis may provide us one of useful tools for condition monitoring and fault diagnosis of railway vehicles
Electron/pion separation with an Emulsion Cloud Chamber by using a Neural Network
We have studied the performance of a new algorithm for electron/pion
separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion
films. The software for separation consists of two parts: a shower
reconstruction algorithm and a Neural Network that assigns to each
reconstructed shower the probability to be an electron or a pion. The
performance has been studied for the ECC of the OPERA experiment [1].
The separation algorithm has been optimized by using a detailed Monte
Carlo simulation of the ECC and tested on real data taken at CERN (pion beams)
and at DESY (electron beams). The algorithm allows to achieve a 90% electron
identification efficiency with a pion misidentification smaller than 1% for
energies higher than 2 GeV
First-principles study of the structural energetics of PdTi and PtTi
The structural energetics of PdTi and PtTi have been studied using
first-principles density-functional theory with pseudopotentials and a
plane-wave basis. We predict that in both materials, the experimentally
reported orthorhombic phase will undergo a low-temperature phase
transition to a monoclinic ground state. Within a soft-mode framework,
we relate the structure to the cubic structure, observed at high
temperature, and the structure to via phonon modes strongly
coupled to strain. In contrast to NiTi, the structure is extremely close
to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely
transition mechanisms in the present case.Comment: 8 pages 5 figure
Neutrino oscillation physics at an upgraded CNGS with large next generation liquid Argon TPC detectors
The determination of the missing element (magnitude and phase) of
the PMNS neutrino mixing matrix is possible via the detection of \numu\to\nue
oscillations at a baseline and energy given by the atmospheric
observations, corresponding to a mass squared difference . While the current optimization of the CNGS
beam provides limited sensitivity to this reaction, we discuss in this document
the physics potential of an intensity upgraded and energy re-optimized CNGS
neutrino beam coupled to an off-axis detector. We show that improvements in
sensitivity to compared to that of T2K and NoVA are possible with
a next generation large liquid Argon TPC detector located at an off-axis
position (position rather distant from LNGS, possibly at shallow depth). We
also address the possibility to discover CP-violation and disentangle the mass
hierarchy via matter effects. The considered intensity enhancement of the CERN
SPS has strong synergies with the upgrade/replacement of the elements of its
injector chain (Linac, PSB, PS) and the refurbishing of its own elements,
envisioned for an optimal and/or upgraded LHC luminosity programme.Comment: 37 pages, 20 figure
Semileptonic decays and Charmonium distribution amplitude
In this paper we study the semileptonic decays of the meson in the
Light-Cone Sum Rule (LCSR) approach. The result for each channel depends on the
corresponding distribution amplitude of the final meson. For the case of
decaying into a pseudoscalar meson, to twist-3 accuracy only the leading twist
distribution amplitude (DA) is involved if we start from a chiral current. If
we choose a suitable chiral current in the vector meson case, the main twist-3
contributions are also eliminated and we can consider the leading twist
contribution only. The leading twist distribution amplitudes of the charmonium
and other heavy mesons are given by a model approach in the reasonable way.
Employing this charmonium distribution amplitude we find the cross section
which is consistent with Belle
and BaBar's data. Based on this model, we calculate the form factors for
various decay modes in the corresponding regions. Extrapolating the form
factors to the whole kinetic regions, we get the decay widths and branching
ratios for various decay modes including their modes when they are
kinematically accessible.Comment: Changed content partially, Added references, 16 pages,2 figure
Study of the radiative decay with CMD-2 detector
Using the of data collected with the CMD-2 detector at VEPP-2M
the decay mode , has been
studied. The obtained branching ratio is B(.Comment: 13 pages, 5 figures, LaTex2e, to be published in Phys. Lett.
Valence-quark distributions in the pion
We calculate the pion's valence-quark momentum-fraction probability
distribution using a Dyson-Schwinger equation model. Valence-quarks with an
active mass of 0.30 GeV carry 71% of the pion's momentum at a resolving scale
q_0=0.54 GeV = 1/(0.37 fm). The shape of the calculated distribution is
characteristic of a strongly bound system and, evolved from q_0 to q=2 GeV, it
yields first, second and third moments in agreement with lattice and
phenomenological estimates, and valence-quarks carrying 49% of the pion's
momentum. However, pointwise there is a discrepancy between our calculated
distribution and that hitherto inferred from parametrisations of extant
pion-nucleon Drell-Yan data.Comment: 8 pages, 3 figures, REVTEX, aps.sty, epsfig.sty, minor corrections,
version to appear in PR
Anisotropy in granular media: classical elasticity and directed force chain network
A general approach is presented for understanding the stress response
function in anisotropic granular layers in two dimensions. The formalism
accommodates both classical anisotropic elasticity theory and linear theories
of anisotropic directed force chain networks. Perhaps surprisingly, two-peak
response functions can occur even for classical, anisotropic elastic materials,
such as triangular networks of springs with different stiffnesses. In such
cases, the peak widths grow linearly with the height of the layer, contrary to
the diffusive spreading found in `stress-only' hyperbolic models. In principle,
directed force chain networks can exhibit the two-peak, diffusively spreading
response function of hyperbolic models, but all models in a particular class
studied here are found to be in the elliptic regime.Comment: 34 pages, 17 figures (eps), submitted to PRE, figures amended,
partially to compare better to recent exp. wor
- …