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Abstract 
 

Adaptive noise cancelling (ANC) is a technique which is very effective to remove 
additive noises from the contaminated signals. It has been widely used in the fields of 
telecommunication, radar and sonar signal processing. However it was seldom used for 
the surveillance and diagnosis of mechanical systems before late of 1990s. As a 
promising technique it has gradually been exploited for the purpose of condition 
monitoring and fault diagnosis. Time-frequency analysis is another useful tool for 
condition monitoring and fault diagnosis purpose as time-frequency analysis can keep 
both time and frequency information simultaneously. This paper presents an ANC and 
time-frequency application for railway wheel flat and rail surface defect detection. The 
experimental results from a scaled roller test rig show that this approach can significantly 
reduce unwanted interferences and extract the weak signals from strong background 
noises. The combination of ANC and time-frequency analysis may provide us one of 
useful tools for condition monitoring and fault diagnosis of railway vehicles.  
 
Key words: adaptive noise cancelling, wheel-rail contact, time-frequency analysis, signal 
processing 
 
1. Introduction 

 
The interest in the ability to monitor system structure integrity and detect damage at the 
earliest possible stage is persistent throughout the civil, mechanical and aerospace 
engineering communities. Due to the fact that many such systems are complex, dynamic 
and time-varying, the necessary signal pre-processing and analysis techniques are 
required in order to extract useful information from raw signals. The signal pre-
processing methods are to condition the raw signals and make every effort to eliminate 
the unwanted noise from the raw signals while signal analysis techniques are to extract 
signal features from the conditioned raw signals. One of the well-known techniques in 
communication area for raw signal pre-processing is adaptive noise cancellation (ANC). 
ANC is a technique which is very useful to remove additive noises from the contaminated 
raw signals. It was firstly reported in 1975 that ANC was successfully applied to subtract 
a pregnant woman’s heart rate interference from the very weak foetus heart rate 
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monitoring [1]. Then this technique was widely used in telecommunication, radar and 
sonar signal processing because of its good performance in applications of noise 
reduction. The results from experiments of speech enhancement and speech recognition 
are especially encouraging [2-3]. After the late 1990s, ANC has also found its application 
in the area of condition monitoring and fault diagnosis [4-6].  
 
The signal analysis techniques for condition monitoring can be classified into time-
domain analysis, frequency-domain analysis, and joint time-frequency domain analysis. 
The time-domain analysis methods are to identify the quantities of a signal related to its 
time behaviour such as the maximum amplitude, root mean square (rms) value, kurtosis 
and crest factor of a signal, while the frequency-domain analysis methods are to analyse 
the contents of a signal related to its frequency behaviour, like power spectrum, cepstrum 
and higher-order spectrum of a signal.[7-11]. Since machinery operating in non-
stationary mode generates a signature which at each instant of time has a distinct 
frequency, it is desirable to use time-frequency analysis technique to see how frequency 
changes with time. Time-frequency analysis techniques had found limited use in the past, 
except for the last two decades, primarily due to their very high computational 
complexity and the lack of adequate computing resources of the time. However the fast 
advances of computers in the last 10 years and the outstanding potential of new time-
frequency method like wavelet transform has made them recently a very active area of 
research [12-16]. 
 
Rail and wheel faults like rail surface crack, squats, corrugation, and wheel flat can cause 
large dynamic contact forces at the wheel–rail interface and lead to fast deterioration of 
the track. Early detection of such defects is very important for timely maintenance. 
Extensive theoretical and experimental works have been carried out to investigate what is 
the best way to identify rail and wheel faults. Jun et al [17] suggested a method of 
estimating irregularities in railway tracks using acceleration data measured from high-
speed trains. A mixed filtering approach was proposed for stable displacement estimation 
and waveband classification of the irregularities in the measured acceleration. Kawasaki 
and Youcef-Toumi [18] presented a method based on the car-body acceleration for track 
condition monitoring. But the car-body acceleration is highly dependent on the primary 
and the secondary suspension, so the effect of the track irregularities is difficult to extract 
from such data. Marija and Zili et al [19] attempted to determine a quantitative 
relationship between the characteristics of the accelerations and the track defects, axle 
box acceleration at a squat. The dynamic contact was simulated through finite element 
modeling. Belotti et al [20] presented a method of wheel flat detection using a wavelet 
transform method. In their study, a series of accelerometers were put under the rail bed to 
detect the impact force caused by a wheel flat and the signals were analysed based on the 
wavelet property of variable time-frequency resolution.  
 
This paper made an attempt to use ANC technique as signal pre-processing in order to 
increase the signal-to-noise ratio of a signal and also to use time-frequency analysis 
techniques for time-varying impact excitation caused by rail and wheel surface defects. 
The paper is presented as follows. Section 2 introduces the basic concepts for ANC and 
four time-frequency analysis techniques (Short-Time-Fourier-Transform, Wigner-Ville-
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Transform, Choi-Williams-Transform and Wavelet Transform). In section 3 the 
experimental test rig is described.  Experimental results and discussion are shown in 
section 4. Finally conclusions are given in section 5. 
 
 
2. ANC and time-frequency analysis theories 

 

2.1. Adaptive noise cancelling technique 

The principal of ANC is that it makes use of an auxiliary or reference input derived from 
one or more sensors located in points in the noise or unwanted signal field where the 
concerned signal is weak. The input is filtered and subtracted from a primary input 
containing both signal and noise. Because the filtering and subtraction are controlled by 
an appropriate adaptive process, noise reduction can be accomplished with little 
distorting the signal or increasing the output noise level. Figure 1 presents the basic 
philosophy of ANC. It can be seen that the primary input is a combination of the signal 
source s and the noise source n. The auxiliary input is the noise source n1 which is 
correlated with the primary input noise source n and is filtered to produce an estimation 
of the noise source �̂. The system output �̂ is the source estimation which is the signal s 
plus noise source n, and then minus the estimation of noise source �̂ with the adaptive 
filter. If n and �̂ are close enough, a better estimation of signal source �̂ can be obtained. 
However there are some conditions attached for this method. The first condition is that 
the signal source s is uncorrelated with noise signal n and n1. The second condition is that 
in order to produce the best estimation of the signal source the ANC system output e has 
to be minimized in term of least means square of power as follows [21]: 
 � = �̂ = � + � − �̂         (1) 
 
Squaring equation 1 and taking expectations in consideration of the first condition 
mentioned above produces, 
 [� ] = [�̂ ] = [� ] + [ � − �̂ ] + 2 [� � − �̂ ] = [� ] + [ � − �̂ ] (2) 
 
If the item [ � − �̂ ] is minimized in the least square means, the best least square 
estimate of the signal �̂ can be achieved with  
 [� ] = [�̂ ] = [� ]        (3) 
 
The least mean squares (LMS) algorithm is used for adjusting the filter coefficients to 
minimize the cost function. Compared to recursive least squares (RLS) algorithms, the 
LMS algorithms do not involve any matrix operations. Therefore, the LMS algorithms 
require fewer computational resources and memories than the RLS algorithms. The 
implementation of the LMS algorithms also is less complicated than the RLS algorithms. 
To minimize the mean square error [� ] the gradient of [� ]with respect to weights w 
can be set to zero. That is 
 �� [� ]=0          (4) 

http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_algorithms/#categorize
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_rls_algorithms/
http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_choose_algorithm/
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which yields the Wiener equation 
 � = �− �          (5) 
 
Where R=E[(n1)·(n1)

T] is the auxiliary inputs correlation matrix and P=E[(s+n)·(n1)] is 
the cross-correlation column vector between the primary and the auxiliary inputs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2. Time-frequency analysis techniques 
 
Time-frequency analysis techniques had found limited use in the past, except for the last 
two decades, primarily due to their very high computational complexity and the lack of 
adequate computing resources of the time. However the fast advances of computers in the 
last 10 years and the outstanding potential of new time-frequency method like wavelet 
transform has made them recently a very active area of research. The most commonly 
used time-frequency presentation is the Short-Time-Fourier-Transform (STFT), which 
was originated from the well-known Fourier transform. In STFT time-localization can be 
achieved by first windowing the signal so as to cut off only a well-localized slice of s(t) 
and then taking its Fourier Transform. The STFT of a signal s(t) can be defined as [22] 
 , = ℎ � − � �−∞−∞       (6) 
 
Where τ and ω denote the time of spectral localization and Fourier frequency, 
respectively, and h(τ-t) denotes a window function. However the STFT has some 
problems with dynamic signals due to its limitations of fixed window width.  
 
Another well-known time-frequency representation is the Wigner-Ville transform. The 
Wigner transform was developed by Eugene Wigner in 1932 to study the problem of 
statistical equilibrium in quantum mechanics and was first introduced in signal analysis 
by the French scientist, Ville about 15 years later. It is commonly known in the signal 
processing community as the Wigner-Ville Transform [23]. 

�̂ 

Signal Source 

Noise Source Adaptive 
Filter 

System Output 

 
+ 

- 

s+ n 

n1 

Primary 
Input 

Auxiliary 
Input 

Figure 1 The adaptive noise cancelling concept 

� = �̂= (s+ n)-�̂ 
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Given a signal s(t), its Wigner-Ville transform is defined by 
 , = �∞−∞ + � 2 �∗ − � 2⁄ �− �⁄ �     (7) 
 
The Wigner-Ville transform ,  essentially amounts to considering inner products 
of copies of � + � �− �  of the original signal shifted in time-domain with the 
corresponding reversed copy � − + � � � . Simple geometrical considerations show 
that such a procedure provides insights into the time-frequency content of a signal. From 
the definition of equation (7) it can be seen that the calculation of Wigner-Ville transform 
requires infinite quantity of the signal, which is impossible in practice. One practical 
method is to add a window h(τ) to the signal. That leads to a new version of the Wigner-
Ville transform as follows: 
 � , = ℎ � �∞−∞ + � 2 �∗ − � 2⁄ �− �⁄ �    (8) 
 
Which is called pseudo-Wigner–Ville (PWV) representation. 
 
However there is a well-known drawback of using Wigner-Ville distribution. The 
interference or cross-terms exist between any two signals due to the fact the Wigner-Ville 
transform is a bilinear transform. For example, if a signal consists of signal 1 and signal 2, 
the Wigner-Ville transform of the signal is 
 � , = � , + � , + 2ℛ� � , , )  (9) 
 
Where � , , = ℎ � �∞−∞ + � 2 · ℎ � �∗ − � 2⁄ �− �⁄ �  is called 
the cross term Wigner-Ville transform of signal 1 and signal 2. In order to get rid of the 
cross-term a smoothed pseudo Wigner-Ville transform (SPWVT) has to be used. 
 
As the Wigner-Ville transform can be generalized to a large class of time-frequency 
representations called Cohen’s class representations, one of natural choices is to select 
some Cohen’s kernel functions which can suppress the cross-term. The Choi–Williams 
Transform (CWT) is one of them. CWT was first proposed by Hyung-Ill Choi and 
William J. Williams in 1989 [24]. This distribution function adopts exponential kernel to 
suppress the cross-term. The CWT mathematical definition of a signal s is 
 � , = √4��2�

∞−∞ �− �−� 2�24�2 � � + � 2⁄ �∗ � − � 2⁄ �− � � �  (10) 

The CWT can also be considered as a type of “smoothed WVT” due to the fact that as 
seen in equation (10) if � →+∞, CW will become WVT. On the other hand, the smaller � is, the better the cross-term reduction is. However, the kernel gain does not decrease 
along the axes in the ambiguity domain. Consequently, the kernel function of the CWT 
function can only filter out the cross-terms result from the components differ in both time 
and frequency centre. Despite this disadvantage, CWT still is one of the most popular 
time-frequency analysis techniques. 
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Finally another relatively new time-frequency analysis technique is the wavelet transform 
(WT). Unlike Fourier analysis which breaks up a signal into sine waves of various 
frequencies wavelet analysis is to decompose a signal into shifted and scaled versions of 
the original (or mother) wavelet. One major advantage provided by wavelets is the ability 
to perform local analysis. Because wavelets are localized in time and scale, wavelet 
coefficients are able to localize abrupt changes in smooth signals. Also the WT is good at 
extracting information from both time and frequency domains. However the WT is 
sensitive to noise. 
 
For a signal s(t), the WT transform can be given as [25] 
 �, � = � �, � = √|�| � ∗( − � �⁄ )∞−∞     (11) 

 
Where ψ(t-τ/x) is the mother wavelet with a dilation x and a translation τ which is used 
for localization in frequency and time. 
 
 
3. The roller test rig and experiments set up 
 
In order to validate the suggested techniques, a series of experiments has been carried out 
on one 1/5 scale roller rig at University of Huddersfield. A scaled roller rig can offer a 
number of advantages over a full size roller rig such as a smaller space occupied by the 
rig and more easily handled. A scaled roller rig can be used to demonstrate the behaviour 
of a bogie vehicle under various running conditions without losing generality as long as 
the effect of scaling on the equations of governing the wheel-rail interaction (creep force) 
is maintained. Our roller rig scaling factor for the mass is 53 and the inertia scaling factor 
is 55 which were set according to Kalker’s theory. The roller rig consists of four rollers 
supported in yoke plates incorporating the rollers in supporting bearings. The roller 
motion is provided by servo hydraulic actuators which are connected directly to the 
supporting yoke plates, these actuators being controlled by a digital controller which 
allows the inputs to follow defined waveforms or measured track data. The bogie vehicle 
parameters were selected to represent those of a typical high speed passenger coach (the 
BR Mk4 passenger coach). The wheel profile is a machined scale version of the BR P8 
profile and the rollers have a scale BS 110 rail profile with no rail inclination.. The 
parameters for the roller rig are given in Table 1. As indicated in Figure 1 two 
accelerometers were installed on wheel axle boxes. One dent with a surface size of 3mm 
long x 2mm wide x 0.2mm deep was made on the surface of one rollers to simulate rail 
surface defect. One wheel flat with a size of 2mm wide x 1mm long was also made on the 
wheel paired with the dented roller. The accelerometer with the underneath roller defect 
was used as the primary input of the ANC filter and another accelerometer without 
underneath roller defect was linked to the auxiliary input of the ANC filter as indicated in 
Figure 1-2. The acceleration data were sampled by a YE6231 data acquisition system 
which has 4 channels, 24-bit resolution and maximum sampling rate 100 kHz. 
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Table 1 The parameters for the roller rig 

Parameter Full size 1/5 scale 
wheelset mass 1850 kg 14.8 kg 

wheelset rotational inertia 174 kgm2 0.056 kgm2 
wheelset roll/yaw inertia 935 kgm2 0.300 kgm2 

bogie mass 2469 kg 19.75 kg 
bogie roll inertia 1130 kgm2 0.361 kgm2 
bogie yaw inertia 2142 kgm2 0.685 kgm2 
wheel diameter 0.914 m 0.182 m 

gauge 1.435 m 0.287 m 
wheelbase 2.5 m 0.5 m 

speed v v/5 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 The primary and auxiliary inputs of the ANC filter 
 
 
 

 
 

Figure 3 The photo of the 1/5 roller test rig 
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4. Experimental results and discussions 
 
 In figure 4, a series of impact vibration pulses caused by a roller surface defect under 
three different wheelset running speeds are presented. When the wheelset running speed 
is low, the clear impact pulses caused by the roller surface defect can be seen (figure 
4(a)). However as the wheelset running speed rises, the roller surface defect impact 
pulses will be contaminated by wheel flange contact and some other unknown noises as 
shown in figure 4(c). Some kinds of signal processing techniques are necessary in order 
to eliminate the unwanted noises. Figure 5 presents the corresponding spectra of the 
impact vibration under different wheelset running speeds. It shows that when wheelset 
speed is low, the impact caused by the defect can only excite some higher frequency 
content of the wheelset system (between 2000-2500Hz). As the wheelset speed continues 
to rise as indicated in figure 5(b)-(c), the higher frequency caused by the impact 
diminished and the lower band natural frequencies 300-400Hz, 600-650Hz and 1100-
1300Hz became the dominant frequencies in the spectrum because the creep forces 
between wheel and rail were increased with the wheelset rotating speed rising.  
 
Figures 6-8 present some results which show the effects of the ANC noise cancellation 
for the wheelset running from low to high speeds. Figure 6(a) is the vibration signal of 
the roller with a surface defect used as the primary input for the ANC filter (the top wheel 
of the right wheelset) and figure 6(b) is the vibration signal of the roller without a surface 
defect used as auxiliary input for the ANC filter (the bottom wheel of the right wheelset), 
and figure 6(c) is the signal after ANC processing. The slight signal to noise ratio 
improvement can be seen with and without ANC processing in figure 6. Figure 7 gives 
the ANC effect for wheelset running speed 15km/h. As expected the impact vibration 
amplitude is increased proportionally with the wheelset speed and a better ANC 
cancellation performance is observable in figure 7. When the wheelset running speed 
continues to rise, the impact signal caused by roller surface defect is severely corrupted 
by some unwanted noises like the wheelset lateral movement and the contact between 
wheel flanges and rollers (figure 8(a)). However the ANC processing can still recover the 
corrupted impact signal well as demonstrated in figure 8(c) despite there is a low signal-
to-noise ratio when compared with the low wheelset running speed. 
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Figure 4 The impact vibration signals caused by roller surface defects under different 

wheelset running speeds 

 
Figure 5 The impact vibration spectra under different wheelset running speeds 
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Figure 6 The ANC cancellation effect for wheelset running at 3km/h 

 
Figure 7 The ANC cancellation effect for wheelset running at 15km/h 
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Figure 8 The ANC cancellation effect for wheelset running at 25km/h 

 
A further investigation was made to combine the ANC processing with time-frequency 
analysis because time-frequency analysis has the advantage of presenting time and 
frequency information simultaneously. Four time-frequency transform techniques 
(SPWVT, STFT, CWT and WT) were used for one of impact signals with and without 
ANC processing. Figure 9 shows the SPWVT result for the impact signal without ANC 
processing. It can be seen there is an unknown noise exists at about 75ms in time domain 
and 400Hz in the frequency domain without the ANC processing. However after the 
ANC processing, the noise was removed and a better and clearer SPWVT result was 
achieved (figure 10) with the enhanced frequency components at 1.4 kHz for roller 
surface defect and wheel defect. The same signal was also analysed by STFT and given 
in figure 11-12. The STFT analysis presents very similar result with SPWVT but with 
slightly lower resolution in time and frequency domains. The Choi–Williams Transform 
(CWT) of the impact signal was shown in figure 13-14. Due to the fact the kernel gain 
does not decrease along the axis in the frequency domain, a rather long smear bar appears 
with the roller surface defect pulse in the frequency axis. Despite of this disadvantage, 
CWT can still give a good time and frequency resolution for the roller surface defect 
signal. Finally wavelet transform (WT) analysis was carried out for the signal with and 
without ANC processing (figures 15-16). It can be seen that WT demonstrates a good 
ability to localize the information in time and frequency domains. However because WT 
is sensitive to noises, figures 15-16 do show some tiny variations caused by random 
noises.  

 

0 0.5 1 1.5 2 2.5
-20

0

20

A
cc

. 
(m

/s
2 )

(a) The primary input

0 0.5 1 1.5 2 2.5
-20

0

20
A

cc
. 

(m
/s

2 )

(b) The auxilitary input

0 0.5 1 1.5 2 2.5
-20

0

20

Time (sec)

A
cc

. 
(m

/s
2 )

(c) The ANC filter output



12 
 

 
Figure 9 SPWVT of the impact signal without ANC processing 

 
Figure 10 SPWVT of the impact signal with ANC processing 
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Figure 11 STFT of the impact signal without ANC processing 

 

 
Figure 12 STFT of the impact signal with ANC processing 
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Figure 13 CWT of the impact signal without ANC processing 

 
Figure 14 CWT of the impact signal with ANC processing 
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Figure 15 WT of the impact signal without ANC processing 

 
Figure 16 WT of the impact signal with ANC processing 

 
5. Conclusions 
 
In this study, an adaptive noise cancelling (ANC) technique with time-frequency signal 
processing was proposed to detect rail surface defects. A series of experiments was 
carried out on a 1/5 scale roller test rig. The experiment results demonstrated that if a 
wheelset is running at low speed the ANC method is less attractive because of the good 
original signal-to-noise ratio in the vibration signal. However if a wheelset is running at 
relatively high speed, there is a significant level of noise presented. For example, the 
wheel flange contacts between wheel and rail can contaminate the wanted signal caused 
by rail surface defects and makes the detection difficult. The experiments proved that 
ANC could be an effective way to eliminate this unwanted noise.  
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Further investigation about time-frequency analysis techniques was also made for rail 
surface defects. Four time-frequency analysis methods (STFT, SPWVT, CWT and WT) 
were tested. The results show all four time-frequency methods can present proper time-
frequency information for the vibration generated by wheel flat and rail surface defects.  
However they have different advantages and disadvantages. The SPWVT gives a better 
representation with a both time and frequency resolutions while WT shows good 
localisations in both time and frequency dimensions. STFT presents slightly lower 
resolutions in time and frequency axes. CWT displays reasonable information of the 
roller surface defect signal in time and frequency domains but with some smear 
disadvantage effects in frequency domain caused by its inherited problem.   Despite of 
this drawback CWT is still a good alternate choice for the time-frequency analysis. The 
combination of the ANC technique and an appropriate time-frequency analysis method 
like SPWVT and WT may  provide a very useful tool for condition monitoring and fault 
diagnosis in the railway industry. 
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