13 research outputs found

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    Taking a closer look at whole organisms

    No full text

    Transcriptional pathways linked to fetal and maternal hepatic dysfunction caused by gestational exposure to perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) in CD-1 mice

    No full text
    Per- and polyfluoroalkyl substances (PFAS) comprise a diverse class of chemicals used in industrial processes, consumer products, and fire-fighting foams which have become environmental pollutants of concern due to their persistence, ubiquity, and associations with adverse human health outcomes, including in pregnant persons and their offspring. Multiple PFAS are associated with adverse liver outcomes in adult humans and toxicological models, but effects on the developing liver are not fully described. Here we performed transcriptomic analyses in the mouse to investigate the molecular mechanisms of hepatic toxicity in the dam and its fetus after exposure to two different PFAS, perfluorooctanoic acid (PFOA) and its replacement, hexafluoropropylene oxide-dimer acid (HFPO-DA, known as GenX). Pregnant CD-1 mice were exposed via oral gavage from embryonic day (E) 1.5–17.5 to PFOA (0, 1, or 5 mg/kg-d) or GenX (0, 2, or 10 mg/kg-d). Maternal and fetal liver RNA was isolated (N = 5 per dose/group) and the transcriptome analyzed by Affymetrix Array. Differentially expressed genes (DEG) and differentially enriched pathways (DEP) were obtained. DEG patterns were similar in maternal liver for 5 mg/kg PFOA, 2 mg/kg GenX, and 10 mg/kg GenX (R2: 0.46–0.66). DEG patterns were similar across all 4 dose groups in fetal liver (R2: 0.59–0.81). There were more DEGs in fetal liver compared to maternal liver at the low doses for both PFOA (fetal = 69, maternal = 8) and GenX (fetal = 154, maternal = 93). Upregulated DEPs identified across all groups included Fatty Acid Metabolism, Peroxisome, Oxidative Phosphorylation, Adipogenesis, and Bile Acid Metabolism. Transcriptome-phenotype correlation analyses demonstrated > 1000 maternal liver DEGs were significantly correlated with maternal relative liver weight (R2 >0.92). These findings show shared biological pathways of liver toxicity for PFOA and GenX in maternal and fetal livers in CD-1 mice. The limited overlap in specific DEGs between the dam and fetus suggests the developing liver responds differently than the adult liver to these chemical stressors. This work helps define mechanisms of hepatic toxicity of two structurally unique PFAS and may help predict latent consequences of developmental exposure

    Utility of extrapolating human S1500+ genes to the whole transcriptome: tunicamycin case study

    No full text
    The TempO-Seq S1500+ platform(s), now available for human, mouse, rat, and zebrafish, measures a discrete number of genes that are representative of biological and pathway co-regulation across the entire genome in a given species. While measurement of these genes alone provides a direct assessment of gene expression activity, extrapolating expression values to the whole transcriptome (~26 000 genes in humans) can estimate measurements of non-measured genes of interest and increases the power of pathway analysis algorithms by using a larger background gene expression space. Here, we use data from primary hepatocytes of 54 donors that were treated with the endoplasmic reticulum (ER) stress inducer tunicamycin and then measured on the human S1500+ platform containing ~3000 representative genes. Measurements for the S1500+ genes were then used to extrapolate expression values for the remaining human transcriptome. As a case study of the improved downstream analysis achieved by extrapolation, the "measured only" and "whole transcriptome" (measured + extrapolated) gene sets were compared. Extrapolation increased the number of significant genes by 49%, bringing to the forefront many that are known to be associated with tunicamycin exposure. The extrapolation procedure also correctly identified established tunicamycin-related functional pathways reflected by coordinated changes in interrelated genes while maintaining the sample variability observed from the "measured only" genes. Extrapolation improved the gene- and pathway-level biological interpretations for a variety of downstream applications, including differential expression analysis, gene set enrichment pathway analysis, DAVID keyword analysis, Ingenuity Pathway Analysis, and NextBio correlated compound analysis. The extrapolated data highlight the role of metabolism/metabolic pathways, the ER, immune response, and the unfolded protein response, each of which are key activities associated with tunicamycin exposure that were unrepresented or underrepresented in one or more of the analyses of the original "measured only" dataset. Furthermore, the inclusion of the extrapolated genes raised "tunicamycin" from third to first upstream regulator in Ingenuity Pathway Analysis and from sixth to second most correlated compound in NextBio analysis. Therefore, our case study suggests an approach to extend and enhance data from the S1500+ platform for improved insight into biological mechanisms and functional outcomes of diseases, drugs, and other perturbations.Toxicolog
    corecore