73 research outputs found

    Population Dynamics and Habitat Ecology of Black Bears in the Ouachita Mountains of Oklahoma

    Get PDF

    Nonapeptide Receptor Distributions in Promising Avian Models for the Neuroecology of Flocking

    Get PDF
    Collective behaviors, including flocking and group vocalizing, are readily observable across a diversity of free-living avian populations, yet we know little about how neural and ecological factors interactively regulate these behaviors. Because of their involvement in mediating a variety of social behaviors, including avian flocking, nonapeptides are likely mediators of collective behaviors. To advance the neuroecological study of collective behaviors in birds, we sought to map the neuroanatomical distributions of nonapeptide receptors in three promising avian models that are found across a diversity of environments and widely ranging ecological conditions: European starlings, house sparrows, and rock doves. We performed receptor autoradiography using the commercially available nonapeptide receptor radioligands, 125I-ornithine vasotocin analog and 125I-linear vasopressin antagonist, on brain tissue sections from wild-caught individuals from each species. Because there is known pharmacological cross-reactivity between nonapeptide receptor subtypes, we also performed a novel, competitive-binding experiment to examine the composition of receptor populations. We detected binding in numerous regions throughout the brains of each species, with several similarities and differences worth noting. Specifically, we report that all three species exhibit binding in the lateral septum, a key brain area known to regulate avian flocking. In addition, sparrows and starlings show dense binding in the dorsal arcopallium, an area that has received scant attention in the study of social grouping. Furthermore, our competitive binding results suggest that receptor populations in sparrows and starlings differ in the lateral septum versus the dorsal arcopallium. By providing the first comprehensive maps of nonapeptide receptors in European starlings, house sparrows, and rock doves, our work supports the future use of these species as avian models for neuroecological studies of collective behaviors in wild birds

    Incorporating basic and applied approaches to evaluate the effects of invasive Asian Carp on native fishes: A necessary first step for integrated pest management

    Get PDF
    Numerous studies throughout North America allege deleterious associations among invasive Asian Carp and native fishes; however, no empirical evidence on a system-wide scale exists. We used Mississippi River Basin fish community data collected by the Long Term Resource Monitoring program and the Missouri Department of Conservation to evaluate possible interaction between Asian Carp and native fishes. Results from two decades of long-term monitoring throughout much of the Mississippi River suggest that Silver Carp relative abundance has increased while relative abundance (Bigmouth Buffalo [F 3, 8240 = 6.44, P\u3c0.01] and Gizzard Shad [F 3, 8240 = 31.04, P\u3c0.01]) and condition (Bigmouth Buffalo [slope = -0.11; t = -1.71; P = 0.1014] and Gizzard Shad [slope = -0.39; t = -3.02; P = 0.0073]) of native planktivores have declined. Floodplain lake qualitative evaluations yielded similar results; floodplain lake fish communities were likely altered (i.e., reductions in native species) by Silver Carp. Furthermore, laboratory experiments corroborated field evidence; Silver Carp negatively influence native planktivores through competition for prey (all comparisons, P \u3e 0.05). To this end, this study provides evidence that Silver Carp are likely adversely influencing native fishes; however, mere presence of Silver Carp in the system does not induce deleterious effects on native fishes. To the best of our knowledge, this evaluation is the first to describe the effects of Asian Carp throughout the Mississippi River Basin and could be used to reduce the effects of Asian Carp on native biota through an integrated pest management program as suggested by congressional policy. Despite the simplicity of the data analyzed and approach used, this study provides a framework for beginning to identify the interactions of invasive fish pests on native fishes (i.e., necessary first step of integrated pest management). However, knowledge gaps remain. We suggest future efforts should conduct more in depth analyses (i.e., multivariate statistical approaches) that investigate the influence on all native species

    Testing a Mahalanobis Distance Model of Black Bear Habitat Use in the Ouachita Mountains of Oklahoma

    Get PDF
    Regional wildlife–habitat models are commonly developed but rarely tested with truly independent data. We tested a published habitat model for black bears (Ursus americanus) with new data collected in a different site in the same ecological region (i.e., Ouachita Mountains of Arkansas and Oklahoma, USA). We used a Mahalanobis distance model developed from relocations of black bears in Arkansas to produce a map layer of Mahalanobis distances on a study area in neighboring Oklahoma. We tested this modeled map layer with relocations of black bears on the Oklahoma area. The distributions of relocations of female black bears were consistent with model predictions. We conclude that this modeling approach can be used to predict regional suitability for a species of interest

    Non-invasive Eye Tracking Methods for New World and Old World Monkeys

    Get PDF
    Eye-tracking methods measure what humans and other animals visually attend to in the environment. In nonhuman primates, eye tracking can be used to test hypotheses about how primates process social information. This information can further our understanding of primate behavior as well as offer unique translational potential to explore causes of or treatments for altered social processing as seen in people with neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. However, previous methods for collecting eye-tracking data in nonhuman primates required some form of head restraint, which limits the opportunities for research with respect to the number of or kinds of primates that can undergo an eye-tracking study. We developed a novel, noninvasive method for collecting eye tracking data that can be used both in animals that are difficult to restrain without sedation as well as animals that are of different ages and sizes as the box size can be adjusted. Using a transport box modified with a viewing window, we collected eye-tracking data in both New (Callicebus cupreus) and Old World monkeys (Macaca mulatta) across multiple developmental time points. These monkeys had the option to move around the box and avert their eyes from the screen, yet, they demonstrated a natural interest in viewing species-specific imagery with no previous habituation to the eye-tracking paradigm. Provided with opportunistic data from voluntary viewing of stimuli, we found that juveniles viewed stimuli more than other age groups, videos were viewed more than static photo imagery, and that monkeys increased their viewing time when presented with multiple eye tracking sessions. This noninvasive approach opens new opportunities to integrate eye-tracking studies into nonhuman primate research

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden
    corecore