91 research outputs found

    Physical properties, correlation and regression analyses of potable water in Ilorin, Nigeria

    Get PDF
    Water is said to be wholesome if it is fit to use for drinking, cooking, food preparation or washing without any potential danger to human health. This research aimed to determine the potability of water from borehole, sachet and river in Ilorin, Nigeria using physical parameters, assess the correlation between the parameters and carry out regression analysis of the parameters. Water samples were randomly collected from the three Local Government Areas (LGA) in Ilorin to assess physical properties and carry out correlation and regression analyses. Temperature of water samples were between 29 ⁰C – 31.4 ⁰C while pH ranged between 6.42 and 7.90. Correlation coefficient was +0.989 while regression analysis estimated optimal temperature of 30 ⁰C for pH of 7.03. The physical parameters of water in the study area fell within recommended range. There was strong direct relationship between the physical parameters studied. Further studies could consider investigating other physical and chemical parameters involving larger number of samples. Keywords: Potable water, physical parameters, correlation, regression, Ilori

    Improvements in Skeletal Muscle Can Be Detected Using Broadband NIRS in First-Time Marathon Runners

    Get PDF
    Skeletal muscle metabolic function is known to respond positively to endurance exercise interventions, such as marathon training. Studies investigating skeletal muscle have typically used muscle biopsy samples or magnetic resonance spectroscopy (MRS) to interrogate metabolic function. We aimed to non-invasively detect exercise-training-induced improvements in muscle function using broadband near-infrared spectroscopy (NIRS). We used NIRS to determine concentration changes in oxygenated haemoglobin (HbO2) and the oxidation state of cytochrome-c-oxidase (oxCCO) in gastrocnemius during arterial occlusion in 14 volunteers. We also used a cardio-pulmonary exercise test (CPET) to assess peak total body oxygen uptake (peakVO2; a measure of fitness). Measurements were made at baseline (BL) which was prior to a period of at least 16 weeks of training for the 2017 London Marathon, and then within 3 weeks after completion of the marathon, follow-up (FU). We observed an increase in locally measured muscle oxygen consumption and rate of oxCCO concentration change, but not in cardio-respiratory fitness measured as whole-body peak oxygen consumption (peakVO2)

    Evaluation of forage legume Lablab purpureus as a supplement for lactating Bunaji cows

    Get PDF
    The effects of forage legume lablab (Lablab purpureus) as a supplement for Bunaji cows was investigated both on-station and on-farm. The results of the on-farm trial involving five herds in each of two villages (control and supplemented) showed that supplementation with 3 kg of lablab increased milk off-take significantly (P<0.001) (1.27±0.09 vs. 0.71±0.1 kg per cow/day for supplemented and non-supplemented cows, respectively). Cows in the supplemented group showed a higher gain in body weight compared to non-supplemented animals (411±1.4 vs. 127±1.8 g/day respectively). They also showed a higher (P<0.001) body condition score than those in the non-supplemented group (3.5-4.5 vs. 2.0-3.5). Overall mean weight gain for calves was however, similar for both supplemented and non-supplemented groups (428±5.3 vs. 428±1.5 g/day). Supplementation of suckling Bunaji cows with lablab improved the performance of the animals and the income of the farmers

    Sequence Defined Disulfide-Linked Shuttle for Strongly Enhanced Intracellular Protein Delivery

    Get PDF
    Intracellular protein transduction technology is opening the door for a promising alternative to gene therapy. Techniques have to address all critical steps, like efficient cell uptake, endolysosomal escape, low toxicity, while maintaining full functional activity of the delivered protein. Here, we present the use of a chemically precise, structure defined three-arm cationic oligomer carrier molecule for protein delivery. This carrier of exact and low molecular weight combines good cellular uptake with efficient endosomal escape and low toxicity. The protein cargo is covalently attached by a bioreversible disulfide linkage. Murine 3T3 fibroblasts could be transduced very efficiently with cargo nlsEGFP, which was tagged with a nuclear localization signal. We could show subcellular delivery of the nlsEGFP to the nucleus, confirming cytosolic delivery and expected subsequent subcellular trafficking. Transfection efficiency was concentration-dependent in a directly linear mode and 20-fold higher in comparison with HIV-TAT-nlsEGFP containing a functional TAT transduction domain. Furthermore, ÎČ-galactosidase as a model enzyme cargo, modified with the carrier oligomer, was transduced into neuroblastoma cells in enzymatically active form

    Brucellosis as an Emerging Threat in Developing Economies:Lessons from Nigeria

    Get PDF
    Nigeria is the most populous country in Africa, has a large proportion of the world's poor livestock keepers, and is a hotspot for neglected zoonoses. A review of the 127 accessible publications on brucellosis in Nigeria reveals only scant and fragmented evidence on its spatial and temporal distribution in different epidemiological contexts. The few bacteriological studies conducted demonstrate the existence of Brucella abortus in cattle and sheep, but evidence for B. melitensis in small ruminants is dated and unclear. The bulk of the evidence consists of seroprevalence studies, but test standardization and validation are not always adequately described, and misinterpretations exist with regard to sensitivity and/or specificity and ability to identify the infecting Brucella species. Despite this, early studies suggest that although brucellosis was endemic in extensive nomadic systems, seroprevalence was low, and brucellosis was not perceived as a real burden; recent studies, however, may reflect a changing trend. Concerning human brucellosis, no studies have identified the Brucella species and most reports provide only serological evidence of contact with Brucella in the classical risk groups; some suggest brucellosis misdiagnoses as malaria or other febrile conditions. The investigation of a severe outbreak that occurred in the late 1970s describes the emergence of animal and human disease caused by the settling of previously nomadic populations during the Sahelian drought. There appears to be an increasing risk of re-emergence of brucellosis in sub-Saharan Africa, as a result of the co-existence of pastoralist movements and the increase of intensive management resulting from growing urbanization and food demand. Highly contagious zoonoses like brucellosis pose a threat with far-reaching social and political consequences

    How long do nosocomial pathogens persist on inanimate surfaces? A systematic review

    Get PDF
    BACKGROUND: Inanimate surfaces have often been described as the source for outbreaks of nosocomial infections. The aim of this review is to summarize data on the persistence of different nosocomial pathogens on inanimate surfaces. METHODS: The literature was systematically reviewed in MedLine without language restrictions. In addition, cited articles in a report were assessed and standard textbooks on the topic were reviewed. All reports with experimental evidence on the duration of persistence of a nosocomial pathogen on any type of surface were included. RESULTS: Most gram-positive bacteria, such as Enterococcus spp. (including VRE), Staphylococcus aureus (including MRSA), or Streptococcus pyogenes, survive for months on dry surfaces. Many gram-negative species, such as Acinetobacter spp., Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Serratia marcescens, or Shigella spp., can also survive for months. A few others, such as Bordetella pertussis, Haemophilus influenzae, Proteus vulgaris, or Vibrio cholerae, however, persist only for days. Mycobacteria, including Mycobacterium tuberculosis, and spore-forming bacteria, including Clostridium difficile, can also survive for months on surfaces. Candida albicans as the most important nosocomial fungal pathogen can survive up to 4 months on surfaces. Persistence of other yeasts, such as Torulopsis glabrata, was described to be similar (5 months) or shorter (Candida parapsilosis, 14 days). Most viruses from the respiratory tract, such as corona, coxsackie, influenza, SARS or rhino virus, can persist on surfaces for a few days. Viruses from the gastrointestinal tract, such as astrovirus, HAV, polio- or rota virus, persist for approximately 2 months. Blood-borne viruses, such as HBV or HIV, can persist for more than one week. Herpes viruses, such as CMV or HSV type 1 and 2, have been shown to persist from only a few hours up to 7 days. CONCLUSION: The most common nosocomial pathogens may well survive or persist on surfaces for months and can thereby be a continuous source of transmission if no regular preventive surface disinfection is performed

    100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care — Preliminary Report

    Get PDF
    BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.)

    Defining the causes of sporadic Parkinson’s disease in the global Parkinson’s genetics program (GP2)

    Get PDF
    \ua9 2023, Springer Nature Limited. The Global Parkinson’s Genetics Program (GP2) will genotype over 150,000 participants from around the world, and integrate genetic and clinical data for use in large-scale analyses to dramatically expand our understanding of the genetic architecture of PD. This report details the workflow for cohort integration into the complex arm of GP2, and together with our outline of the monogenic hub in a companion paper, provides a generalizable blueprint for establishing large scale collaborative research consortia

    Provisioning systems for a good life within planetary boundaries

    Get PDF
    The concept of provisioning systems has recently emerged as a promising way to understand the differences between levels of resource use and social outcomes observed across societies. However, the characteristics of provisioning systems remain poorly understood. Here, we make a new contribution to conceptualising provisioning systems and to understanding differences in the resource efficiency with which they achieve social outcomes. We define a provisioning system as a set of related elements that work together in the transformation of resources to satisfy a foreseen human need. We analyse six theories in terms of their contribution to understanding provisioning systems within the biophysical and social constraints of Raworth’s “Safe and Just Space” framework. We find that most of these theories fail to prioritise human needs and well-being, and do not incorporate explicit environmental limits. However, they provide important insights that we draw upon to identify six important provisioning system elements (households, markets, the commons, the state, techniques, and material stocks). Based on the theories, we also identify two important relationships between elements, namely feedbacks and power relations. We further propose the concept of “appropriating systems” as a component of provisioning systems. Appropriating systems reduce the resource efficiency of human well-being via rent extraction, and act as a barrier to meeting human needs at a sustainable level of resource use. We combine these concepts into a new framework, and discuss applications to energy systems
    • 

    corecore