290 research outputs found

    Successful Care and Reproduction of Green Tree Monitors (Varanus prasinus) at the San Diego Zoo

    Get PDF

    A Review Of Develpoments In Ocean And Coastal Law 1999-2000

    Get PDF

    The Jamming Donut: A Free-Space Gripper based on Granular Jamming

    Full text link
    Fruit harvesting has recently experienced a shift towards soft grippers that possess compliance, adaptability, and delicacy. In this context, pneumatic grippers are popular, due to provision of high deformability and compliance, however they typically possess limited grip strength. Jamming possesses strong grip capability, however has limited deformability and often requires the object to be pushed onto a surface to attain a grip. This paper describes a hybrid gripper combining pneumatics (for deformation) and jamming (for grip strength). Our gripper utilises a torus (donut) structure with two chambers controlled by pneumatic and vacuum pressure respectively, to conform around a target object. The gripper displays good adaptability, exploiting pneumatics to mould to the shape of the target object where jamming can be successfully harnessed to grip. The main contribution of the paper is design, fabrication, and characterisation of the first hybrid gripper that can use granular jamming in free space, achieving significantly larger retention forces compared to pure pneumatics. We test our gripper on a range of different sizes and shapes, as well as picking a broad range of real fruit

    Diversity patterns associated with varying dispersal capabilities as a function of spatial and local environmental variables in small wetlands in forested ecosystems

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The diversity of species on a landscape is a function of the relative contribution of diversity at local sites and species turnover between sites. Diversity partitioning refers to the relative contributions of alpha (local) and beta (species turnover) diversity to gamma (regional/landscape) diversity and can be influenced by the relationship between dispersal capability as well as spatial and local environmental variables. Ecological theory predicts that variation in the distribution of organisms that are strong dispersers will be less influenced by spatial properties such as topography and connectivity of a region and more associated with the local environment. In contrast, the distribution of organisms with limited dispersal capabilities is often dictated by their limited dispersal capabilities. Small and ephemeral wetlands are centers of biodiversity in forested ecosystems. We sampled 41 small and ephemeral wetlands in forested ecosystems six times over a two-year period to determine if three different taxonomic groups differ in patterns of biodiversity on the landscape and/or demonstrate contrasting relationships with local environmental and spatial variables. We focused on aquatic macroinvertebrates (aerial active dispersers consisting predominantly of the class Insecta), amphibians (terrestrial active dispersers), and zooplankton (passive dispersers). We hypothesized that increasing active dispersal capabilities would lead to decreased beta diversity and more influence of local environmental variables on community structure with less influence of spatial variables. Our results revealed that amphibians had very high beta diversity and low alpha diversity when compared to the other two groups. Additionally, aquatic macroinvertebrate community variation was best explained by local environmental variables, whereas amphibian community variation was best explained by spatial variables. Zooplankton did not display any significant relationships to the spatial or local environmental variables that we measured. Our results suggest that amphibians may be particularly vulnerable to losses of wetland habitat in forested ecosystems as they have high beta diversity. Consequently, the loss of individual small wetlands potentially results in local extirpations of amphibian species in forested ecosystems

    A study of starch gelatinisation behaviour in hydrothermally-processed plant food tissues and implications for in vitro digestibility

    Get PDF
    The aim of this study was to investigate the role of the plant food matrix in influencing the extent of starch gelatinisation during hydrothermal processing, and its implications for starch digestibility. Differential scanning calorimetry (DSC) was used to provide a detailed examination of the gelatinisation behaviour of five distinct size fractions (diameters <0.21 to 2.58 mm) of milled chickpea and durum wheat. Gelatinisation parameters were obtained from the DSC thermograms and concomitant microscopy analyses were performed. The estimated terminal extent of gelatinisation (TEG) was compared with our previously published data for in vitro starch digestibility of the same food materials. We observed clear differences in the gelatinisation behaviour of matched size-fractions of chickpeas and durum wheat. In chickpea materials, the TEG values (34–100%) were inversely related to particle size, whereas in durum wheat, no sizedependent limitations on TEG were observed. The TEG values were completely consistent with the extent of starch amylolysis in all size fractions of both durum wheat and chickpea. Microstructural analysis following hydrothermal processing confirmed the presence of some partially gelatinised birefringent starch within intact chickpea cells. Birefringent starch granules were not present in any of the processed fractions of durum wheat. The differences in gelatinisation behaviour of these plant species seem to reflect the individual cell wall properties of these materials. These findings demonstrate the applicability of DSC to real food materials to provide insight into the mechanisms by which the food matrix (particularly the plant cell walls) influences gelatinisation, and consequently, starch amylolysis

    Associative Nitrogen Fixation Linked With Three Perennial Bioenergy Grasses In Field and Greenhouse Experiments

    Get PDF
    © 2020 The Authors. Associative nitrogen (N2)‐fixation (ANF) by bacteria in the root‐zone of perennial bioenergy grasses has the potential to replace or supplement N fertilizer and support sustainable production of biomass, but its application in marginal ecosystems requires further evaluation. In this study, we first combined both greenhouse and field experiments, to explore the N2 fixation effects of three temperate feedstocks Miscanthus × giganteus (giant miscanthus, Freedom), Panicum virgatum (switchgrass, Alamo), and Saccharum sp. (energycane, Ho 02‐147). In field studies across three growing seasons, plant and soil pools of candidate feedstocks were partially composed of N derived from the atmosphere (Ndfa). Energycane, giant miscanthus, and switchgrass were estimated to derive \u3e30%, %Ndfa. Greenhouse studies were also performed to trace isotopically labeled 15N2 into plant biomass and soil pools. Evidence for Ndfa was detected in all three feedstock grasses (using reference 15N of soil, chicory, and sorghum, ÎŽ15N~+7.0). Isotopically labeled 15N2 was traced into biomass (during grass elongation stage) and soil pools. Extrapolation of rates during the 24 hr labeling period to 50 days estimated 30%–55% of plant Ndfa, with the greatest Ndfa for energycane. The findings of the field natural abundance and greenhouse 15N2 feeding experiments provided complementary evidence that perennial bioenergy grasses have the potential to support relatively high rates of ANF, and accumulate diazotroph‐derived N into biomass when grown on non‐fertilized soil

    Public involvement in health and social sciences research: A concept analysis.

    Get PDF
    BACKGROUND: Research funding bodies have significantly increased emphasis on the need for public involvement in research with the requirement to evidence effective methods and approaches to achieving this. Specific definitions and approaches within published research remain tokenistic and vague. OBJECTIVE: The concept analysis explores and clarifies the nature and meaning of public involvement in health and social sciences research and identifies operational definitions which can be used to guide, develop and evaluate public involvement in research activity. SEARCH STRATEGY: A literature search was conducted using online databases. Systematic literature reviews and broader studies on the impact of PPI were included as was grey literature such as guidance from INVOLVE and research funding bodies. Limits were set to papers published in the last 10 years and in the English language. A concept analysis framework adapted from Rodgers (Concept Development in Nursing: Foundations, Techniques and Applications. London, UK: Saunders; 2000) and Walker and Avant (Strategies for Theory construction in Nursing. Boston, MA: Pearson Prentice Hall; 2005) was applied. MAIN RESULTS: Five operational definitions were developed from the concept analysis: undefined involvement; targeted consultation; embedded consultation; co-production; and user-led research. Typical examples of each approach were identified from the literature. Defining attributes included having clear and agreed meaning and purpose for any involvement; reciprocal relationships; and value and recognition of the expertise of all those involved. CONCLUSIONS: The authors argue the need for researchers to more explicitly incorporate and evaluate details of approaches used. Impact of public involvement on a research study should be identified when reporting on findings to prevent tokenistic practices where involvement is viewed as secondary to the core research process
    • 

    corecore