81 research outputs found

    On the validity of power functionals for the homogeneous electron gas in reduced.density-matrix-functional theory

    Get PDF
    Physically valid and numerically efficient approximations for the exchange and correlation energy are critical for reduced density-matrix functional theory to become a widely used method in electronic structure calculations. Here we examine the physical limits of power functionals of the form f(n,n)=(nn)αf(n,n')=(n n')^\alpha for the scaling function in the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting values for the power α\alpha to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the exchange-correlation energy and exclude pinned states with the condition n(k)<1n({\mathbf k})<1 for all wave vectors k{\mathbf k}. The results refine the constraints previously obtained from trial momentum distributions. We also compute the values for α\alpha that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron gas. In both systems, narrow regimes of validity and accuracy are found at α0.6\alpha\gtrsim 0.6 and at rs10r_s\gtrsim 10 for the density parameter, corresponding to relatively low densities.Comment: Phys. Rev. A (in print, 2016

    Superdeformation in 198^{198}Po

    Full text link
    The 174^{174}Yb(29^{29}Si,5n) reaction at 148 MeV with thin targets was used to populate high-angular momentum states in 198^{198}Po. Resulting γ\gamma rays were observed with Gammasphere. A weakly-populated superdeformed band of 10 γ\gamma-ray transitions was found and has been assigned to 198^{198}Po. This is the first observation of a SD band in the A190A \approx 190 region in a nucleus with Z>83Z > 83. The J(2){\cal J}^{(2)} of the new band is very similar to those of the yrast SD bands in 194^{194}Hg and 196^{196}Pb. The intensity profile suggests that this band is populated through states close to where the SD band crosses the yrast line and the angular momentum at which the fission process dominates.Comment: 10 pages, revtex, 2 figs. available on request, submitted to Phys. Rev. C. (Rapid Communications

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    Single step links of the superdeformed band in Pb-194:A measure of the absolute excitation energy, spin and parity of the superdeformed states

    Get PDF
    The EUROGAM array has been used to investigate the decay out of the yrast superdeformed (SD) band in Pb-194. Six single step decays from the lowest observed SD slates to low-lying states at normal deformation (ND) have been identified. From this observation, the excitation energy of the SD band in Pb-194 is established at 4877 +/- 1.5 keV for the 6(+) SD state. The most probable spins and parities of all members of the SD band are also deduced assuming that the SD states have even spin and positive parity
    corecore