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Physically valid and numerically efficient approximations for the exchange and correlation energy are critical
for reduced-density-matrix-functional theory to become a widely used method in electronic structure calculations.
Here we examine the physical limits of power functionals of the form f(n,n") = (nn")* for the scaling function in
the exchange-correlation energy. To this end we obtain numerically the minimizing momentum distributions for
the three- and two-dimensional homogeneous electron gas, respectively. In particular, we examine the limiting
values for the power « to yield physically sound solutions that satisfy the Lieb-Oxford lower bound for the
exchange-correlation energy and exclude pinned states with the condition n(k) < 1 for all wave vectors k. The
results refine the constraints previously obtained from trial momentum distributions. We also compute the values
for « that yield the exact correlation energy and its kinetic part for both the three- and two-dimensional electron
gas. In both systems, narrow regimes of validity and accuracy are found at « 2> 0.6 and at r, 2> 10 for the density

parameter, corresponding to relatively low densities.
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I. INTRODUCTION

Reduced-density-matrix-functional theory [1,2] (RDMFT)
has attracted interest and popularity as an alternative to
density-functional theory [3] (DFT) to deal with complicated
many-particle problems. In contrast with the one-body density
in DFT, the key quantity in RDMFT is the one-body reduced
density matrix (1-RDM), which provides the exact kinetic
energy. It is thus evident that RDMFT can outperform DFT in
strongly correlated systems [4—6], and recent extensions and
investigations include, e.g., finite temperatures [7], excitation
energies [8], and Mott insulators [9,10]. However, so far only
a few energy functionals of the 1-RDM have been developed,
and their practical applicability is still partly unknown.

The so-called power functionals [11] of RDMFT have been
applied in three-dimensional (3D) systems during the past few
years [10,12,13]. In this functional the scaling factor for the
exchange-correlation (xc) energy E,. has a form f(n,n’) =
(nn')¥, where 1/2 < o < 1 can be viewed as a parameter
interpolating between the Hartree-Fock (HF) (¢ = 1) and
Miiller [14] (¢ = 0.5) approximations. The optimal values for
« have been found to vary between 0.525 (stretched H,) and
0.65 (solids). The best overall fit for the 3D homogeneous
electron gas (3DEG) has been obtained witho = 0.55...0.58
[13]. In the two-dimensional (2D) framework, the applications
are more scarce. However, Harju and Tolo [15] have found
reasonable results for 2D quantum Hall droplets at high
magnetic fields with @ ~ 0.65...0.7.

Power functionals are also subject to physical constraints
of RDMFT [16]. In the case of the 3DEG, strict constraints
regarding the solution of the Euler-Lagrange equation and the
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Lieb-Oxford (LO) bound [20] have been studied by Cioslowski
and Pernal [17,18]. A similar study on the 2D homogeneous
electron gas (2DEG) has been recently carried out by some
of the present authors with a particular attention on accessible
densities [19]. However, both of these studies have resorted to
analysis of trial momentum distributions with uncertainty of
their accuracy in comparison with numerically exact results.

In this work we numerically obtain the minimizing mo-
mentum distributions for the power functional in both the
3DEG and 2DEG. The resulting range of validity for « at
various densities is then compared to the results obtained
previously with trial momentum distributions in 3D [17] and
2D [19], respectively. In both cases we begin with the general
constraints on n(k) and on the densities p. We then proceed
with a closer analysis of (i) the LO bound [20] with its recently
suggested tighter forms [21], and (ii) the exclusion of pinned
states with n(k) = 1 [22,23].

We find that in both 3D and 2D the power functionals have
a rather limited range of validity, and only for relatively low
densities, although the numerical solutions extend the range
in comparison with the previously used trial momentum dis-
tributions. We also calculate numerically the exact correlation
energies and their kinetic contributions as a function of «. The
exact solutions coincide only partly, if at all, with the regimes
of validity.

II. HOMOGENEOUS ELECTRON GAS

For the homogeneous electron gas (EG), here generally
in 3D or 2D, we can consider a positive background charge
compensating for the electrostatic (Hartree) energy, so that the
total energy consists of the kinetic and xc components alone,
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ie.,

EE[y] = Tyl + E.lyl. (1)

In RDMFT, we can express the kinetic and xc energies (in
Hartree atomic units) as

Tlyl=—> Z > no(ky) / dr g7, (V200 (r)  (2)
o=t.] P
and
Eelyl=—3 ¥ 3 [ ar [ ar s .m0k,
o=t} p.q

" P 0@ (X )g6 (1)@ po (')
Ir —r/| '

3)

Here Kk, is the wave vector of the pth spin-dependent natural
orbital, which is a plane wave. Now, in the thermodynamic
limit the summation over plane waves is placed by a
momentum-space integration and, hence, we can express the
total energy as a functional of the momentum distribution
[17,19]. Using the normalization constraint and the variational
Euler-Lagrange equation finally leads to

1 / W g S ((K),n(K) @

a1 —wd—1 =K
2 Kk — K|

where w is the Lagrange multiplier, and d = 3 in 3D and
d =2 in 2D. Note that the spin index o has been omitted
here, and in the following we consistently refer to quantities
per particle with spin o. It is important to appreciate that the
Euler-Lagrange equation only holds for all k if the minimizing
momentum distribution has no pinned states, i.e., n(k) # 1 and
n(K) # 0 for all wave vectors K.

The key quantity in the expressions above is the function
f(n(k),n(k’)) used in RDMFT as a scaling factor to take into
account electron-electron correlations beyond the mean-field
or HF level. Our main focus here is on the generic power
functional,

f((K),n(K)) = (n@n®&))? = (n@)nk))". ®)

Here B =2 (e =1) and f =1 (¢ = 1/2) correspond to the
HF and the Miiller functional [14], respectively. The parameter
B is used below instead of « in order to ease the comparison
with Refs. [17] (3D) and [19] (2D).

1
—|k|2 _
2

A. Three-dimensional case
1. General constraints

Following Ref. [17], we first briefly review some funda-
mental constraints for 8 in 3D. We restrict ourselves to fully
variational solutions of Eq. (4); in that case the solutions scale
with the electronic density p as

1-8
n(k) = "2 y(p k), (©6)

where 7n(x) is independent of the density. Using the constraint
0 < n(k) < 1 with a homogeneous scaling requirement for
f(n(k),n(k")) leads to a criterion S > 2/3. Further, physical
constraints of positive kinetic-energy density ¢ and nonpositive
xc energy density €,. (defined per volume in this work) lead
to 8 < 4/3.
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Only a finite range of densities is allowed in the obtained
range, 2/3 < B < 4/3. First, n(k) < 1 yields a criterion

p < Mot (7)

where npax 1s the maximum value of 1(x). Secondly, the Lieb-
Oxford (LO) lower bound [20] for E,. (of spin-unpolarized
gas) yields

—C3p(2p)'°, (8)

where the factor of two results from per-spin notation (see
above). Here C3p = CLY = 1.68 according to the rigorous LO
bound [20], and C3p = CRFP = 1.44 according to a tighter,
nonrigorous bound in Ref. [21]; see also Refs. [24,25] for
recent analysis. We consider both of these bounds in the
following. Generally, the bound in Eq. (8) holds only for
densities

€xe 2

p > [4G8 — D~ AP CE] ©)
where
A= / dk (k) K[
1673

/dk/ JK f(nk), n(k/))_ (10)
k — K|

3275

To summarize the present section, there is a general
constraint 2/3 < 8 < 4/3 in the 3D power functional. In
addition, the allowed densities are restricted by Eqgs. (7)
and (9). In the following we examine how these constraints
change as we consider either a trial momentum distribution
of Ref. [17], or a numerical one that minimizes the energy
functional.

2. Trial momentum distribution

Cioslowski and Pernal [17] considered a parametrized trial
function for n similar to that of the Miiller functional,

(k) = D(B,&)(1 + ¢ [k[H) P, (11)

which is exact for § = 1. Here D is a normalization con-
straint, and ¢ is solved such that the total energy density
€ = A, p?P=2/GF=2) is minimized. This corresponds to the
minimization of the integral A, in Eq. (10). Now, using the
condition n(k) < 1 yields

p <27 0By, (12)
where
¢ (ﬂ)—[ o y
mP = 16T — 10)d —38)0B)F |
and

B8~ = DB~ =3)r@/p’
I'(8/8) '

The lower bound of p is obtained from Eq. (9) by minimizing
A, with the trial wave function [17]. Combining the results
1mplles B > 1.113 with CL9 (Ref. [20]) and 8 > 1.168 with

RPCP (Ref. [21]). In both cases, the upper limit 8 < 4/3
naturally applies (see above).

Q) =
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B. Two-dimensional case
1. General constraints

The 2D case has been considered in detail in Ref. [19]. Here
we summarize only the main findings: The general constraints
implied by the solution of the Euler-Lagrange equation (5), the
homogeneous scaling of f(n(k),n(k’)), and physical €, and ¢
leadto 1/2 < B8 < 3/2.

The main difference between 3D and 2D results arises from
dimension-dependent scaling relations. In 2D, n(K) scales with
the density as

_ 1=
n(k) = p'/*~Vy(p7TK). (13)
Now, n(k) < 1 leads to
o <P (14)

where nmax 1S the maximum value of n(x). In addition, the LO
bound has a different scaling and constant in 2D. The existence
of the lower bound for €,. has been rigorously proved [26],
and the tightest form for this bound has been suggested in
Ref. [21]. In summary, in 2D we have

€xe = —Can(2p)'/?, (15)
with Cop = 1.96. The bounds hold for densities

p > [208 - )22CE] 7, (16)
where
le = o [ dkn®)Ik[*
, F(n(k),n(K)
16*/ k[ ax B k—x) 7

2. Trial momentum distribution

In Ref. [19] a parametrized trial function for n in 2D was
suggested:

k) = D(B,¢)(1 + ¢ [k[H TP, (18)

which is exact for 8 = 1. The strategy to generalize the ansatz
for arbitrary f is similar to the 3D case, i.e., the total energy
density € = I, p®#=2/@F=1) js minimized through the integral
I, in Eq. (17). In contrast to the 3D case, the integral in I,
requires a numerical solution [33].

In 2D, using the condition n(k) <
for the density, i.e.,

p < D" =[47(, 387" — D', (19)

1 yields the upper bound

where ¢, is the value for ¢ in the trial wave function that
minimizes the integral /.. The lower bound for the density is
obtained from Eq. (17) through minimization. In Ref. [19] this
was shown to yield the condition 1.28 < 8 < 3/2.

C. Numerical momentum distribution

In order to assess the quality of the analytical momen-
tum distributions we calculate the momentum distribution
numerically by minimizing the energy functional under the
N-representability constraints. In particular, we compute the
limiting values for the density parameter rfD =[3/ (871,0)]1/ 3
(3D) and 2P = (27p)~1/? (2D), for which the minimizing
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momentum distribution has border minima, i.e., occupation
numbers pinned to n(k) = 1. Furthermore, the LO bound is
considered with €, calculated with the numerically obtained
momentum distribution.

Assuming that the occupation numbers are spherically
symmetric, we can discretize the momentum space into
spherical volume elements 2}, i.e., shells (3D) or rings (2D)
with thickness §k. Averaging the occupation numbers over the
volume elements €2, i.e.,

Njy = f dkn, (k), (20)
Qj
and defining the integral weights

1
DWI; = —— | dk, 21
T @)y /Q D

1
DKI; = —— [ dkk?, 22
T2y /Qj @2)
pxi, = 41 // dk dk ! (23)

T g, 00 Ik — kol

the discretized version of the energy functional reads

E[{n;}1= ) n;sDKI; — > n;,DWI;

Jjo jo

- % > (o nie)DXI . (24)

jko
We note that all integral weights, Egs. (21)—(23), can be solved
analytically [34]. Furthermore, the procedure of taking the
occupation numbers constant in spherical volume elements
implies that we always treat the wave vector k as a con-
tinuous variable. Accordingly, all calculations are done in
the thermodynamic limit, which means that the volume, V,
and the number of particles, N, tend to infinity, while the
ratio p = N/V remains constant. Hence the computed total
energies are variational-meaning upper bounds—to the true
ground-state energy for a given functional. The size of the
spherical volume elements determines the quality of this upper

bound for a given functional.

The minimization of the functional Eq. (24) is a high-
dimensional nonlinear optimization problem in terms of the
occupation numbers {n;}. The chemical potential x is a La-
grangian multiplier ensuring that the minimum configuration
{n}o is normalized to the required density p = ), 1, DWI;.
The minimization is carried out using the scheme proposed in
Ref [27], which employs a fictitious noninteracting electron
gas at finite temperature in order to constrain the occupation
numbers to be n; € [0,1]. The momentum distribution is
linearly sampled by N volume elements for k € [0,k.] and
the tail of the momentum distribution, from k € [k.,100k.], is
logarithmically sampled by N volume elements [35].

III. RESULTS

In Figs. 1 and 2 we show the results for the 3DEG and
2DEG, respectively. The solid lines correspond to critical
densities obtained from numerical momentum distributions
and the dashed lines refer to the variational ansatz for the
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FIG. 1. Density-dependent bounds on the power functional for
the 3DEG. The dashed lines refer to the results from the variational
ansatz and the solid lines correspond to numerical results. The blue
(squares) lines separate the regions with pinned states (below the
curves) and without pinned states (above the curves). The red (circles)
and orange (triangles) lines denote boundary of the regions where the
LO bound is obeyed (below the curves) and the regions where it is
violated (above the curves) for different values of the constant C.

momentum distributions discussed in Secs. Il A (3DEG) and
II B (2DEG). We plot the critical densities, characterized by the
Wigner-Seitz radius ry, as function of the exponent « = /2.

The two upper (red and orange) pairs of curves in Fig. 1
represent the critical densities for which the LO bound holds
as an equality. The orange line corresponds to the original
LO bound (C = 1.68) and the red curve to the tighter LO
bound (C = 1.44) proposed in Ref. [21]. In the region above
the curves the LO bound is violated. Naturally, the tighter LO
bound (C = 1.44) leads to a smaller region of validity. The
numerical results yield a slightly smaller region of validity than

T T T

 |@=@ LO condition (C =1.96)
[ | ==l pinning condition
107

rs (a.u.)

Il Il Il .
0.50 0.55 0.60 0.65 0.70 0.75

(%

FIG. 2. Same as Fig. 1 but for the 2DEG. Here we only show
the result for the tight LO-type bound in 2D (C = 1.96) according to
Ref. [21].
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the ansatz. This means that E, . computed from the variational
ansatz is larger and therefore violates the LO bound—which
is a lower bound—for lower densities (or higher r,). The
fact that the LO curves for the ansatz and the numerical
momentum distributions are very close to each other for the
3DEQG indicates that the variational ansatz is very accurate—at
least in the region close to the critical density determined by
the LO bound.

The lower curves (blue) in Fig. 1 indicate the critical
densities at which the momentum distribution acquires pinned
states, i.e., above the curve we have n(k) < 1 for all k and
below we have n(k) = 1 for some k. Note that the ansatz for the
momentum distribution breaks down below the dashed, blue
curve. The numerical results for the momentum distribution
below the solid, blue curve represent boundary minima of
the RDMFT energy functional, which means that the Euler-
Lagrange equation does not hold for wave vectors k with
n(k) = 1. We see that the numerical momentum distributions
increase the region of unpinned n (k). Since the ansatz becomes
exact for « = 0.5 (or 8 = 1) the solid and the dashed blue
curves coincide at this value. However, the curves for the
LO bound do not coincide at o = 0.5. Most likely this is
due to the fact that the ansatz does not provide valid results
below the pinning ry. Hence the xc energies for the LO bound
in the region below the dashed, blue curve are computed
with momentum distributions that violate the Pauli constraint
0<nk) < 1.

By comparing Figs. 1 and 2 we can see that the results
from the variational ansatz are closer to the numerical results
in the 3DEG than in the 2DEG. This indicates that the
variational ansatz for the 3DEG is closer to the true momentum
distribution than the variational ansatz for the 2DEG.

Next we consider the correlation energies E. produced by
the power functional. We recall that E, for the EG is known
exactly from quantum Monte Carlo simulations for the 3DEG

T T T T

| @=—@ exact F.
[| @@ exact EC
| | Ameg  exact .

—~ 10%¢

rs (a.u

1 1 1 1 1

01 1
0.57 0.58 0.59 0.60 0.61
«

0.62 0.63 0.64 0.65

FIG. 3. Exact E, (red, circles), E, (orange, squares), and f.
(green, triangles) for the 3DEG. Within the shaded region the tight
LO bound (C = 1.44) is satisfied and the momentum distribution is
strictly smaller than one. The solid black line denotes the violation of
the LO bound when the kinetic contribution to the correlations energy
is taken into account.
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FIG. 4. Same as Fig. 3 but for the 2DEG. In the shaded region the
tight LObound (C = 1.96) is satisfied and the momentum distribution
is not pinned, i.e., n(k) < 1. The solid black line denotes the violation
of the LO bound when the kinetic contribution to the correlations
energy is taken into account.

[29] and the 2DEG [30]. The total energy per particle of the
EG is usually written as

A B
€(r) = = + — +ec(ry), (25
r: o ors
where A and B are well-known constants for the HF energy
of the EG [28]. The correlation energy, as implicitly defined
in Eq. (25), contains a kinetic energy contribution f., or
equivalently, we can decompose

€c(ry) = t.(ry) + Ec(ry), (26)
where ¢, is explicitly given by
1 1
e =——— [ dkk*[n(k) — no(k)]. 27
= [ kim0~ noto @7)

Here n(k) is the momentum distribution of the interacting EG
and no(k) is the momentum distribution of the noninteracting
EG, i.e., the Fermi step function. By using scaling relations,
é. and 7, can be obtained from the parametrizations of e, [31].

In Figs. 3 and 4 we show the densities for which the
total correlation energy E., the correlation energy without
kinetic contribution E., and the kinetic correlation energy ¢,
are exact as a function of «. For the exact functional all three
quantities would be exactly reproduced. However, we can see
that for the power functional the three quantities are exact
for different densities at the same power «. This demonstrates
the fact that even if the correlation energy is exact for a given
density, the minimizing momentum distribution is not the exact
momentum distribution.

PHYSICAL REVIEW A 93, 032503 (2016)

We point out that for the 3DEG the kinetic contribution
to the correlation energy is never exact in the region of the
a-r plane for which n(k) < 1 (cf. Fig. 3). For the 2DEG
we find the somewhat surprising result that for & = 0.64 the
correlation energy is exact for densities that violate the LO
bound (cf. Fig. 4). This apparent contradiction can be resolved
by remembering that E. contains kinetic contributions. Hence
we have plotted the solid black lines in both Figs. 3 and 4,
which correspond to the critical densities for the violation
of the LO bound when the kinetic correlation is included in
E,. [36]. Similarly we see that E., which excludes kinetic
correlations, is always in the region of the «—r, plane where
the LO bound is obeyed.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have numerically solved the minimizing
momentum distributions for the power functional in both the
three- and two-dimensional homogeneous electron gas. In
particular, we have studied the ranges of validity for the power
o and the density parameter r; in terms of satisfying the Lieb-
Oxford lower bound for E,. and excluding the pinned states
with n(k) = 1. The results have been compared to previous
limits obtained from variational momentum distributions.

On the plane spanned by « and r,, we have found regions
of validity for the power functionals at & 2 0.57 and r; = 10
in three dimensions and at « 2 0.60 and r; = 5 in two
dimensions. The lower boundaries of these regions in terms
of r—determined by the existence of pinned states—are
pushed further to lower values when using the numerical
solutions instead of the variational momentum distributions.
However, the range of validity corresponds to relatively low
densities, significantly lower than typical densities in, e.g.,
atoms, molecules, or clusters. In two dimensions, 7, ~ 5 could
be realized in semiconductor quantum-dot systems [32].

We have also computed the numerically exact correlation
energies and their kinetic contributions (in terms of density-
functional theory). The exact solutions partly coincide with
the regimes of validity, but not with the same power « for both
quantities E. and .. Therefore, the minimizing momentum
distribution is not the exact one even if the correlation energy
is exact for a given density.
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