47 research outputs found

    From Bio-Prospecting to Field Assessment: The Case of Carvacrol Rich Essential Oil as a Potent Mosquito Larvicidal and Repellent Agent

    Get PDF
    Contemporary legislation tends to increase limitation on the use of all synthetic pesticides, promoting bio-pesticides as a safer alternative. Bio-prospecting efforts for bio-pesticides provide results, which rarely reach the industry. Present essay elaborates on our efforts to chart the path from the laboratory bench to field assessment. Eight Mediterranean wild gathered foods provided the essential oils that were assessed as mosquito control agents against the Asian tiger mosquito (Aedes albopictus). Three Lamiaceae essential oils, derived from Satureja thymbra, Origanum onites, and Thymbra spicata presented carvacrol as principal component. All exhibited DEET-like repellent performance and total larvae mortality defining the carvacrol rich essential oil (CREO) as a promising mosquito control agent. A commercial variety of Origanum vulgare ssp. hirtum, was selected as CREO source and subjected to dose-response and eco-toxicity studies. We have found significant larvicidal (LC90 of 58,747 mg/L), and repellent (0.2 μL/cm2) properties, but also severe toxicity (LC90 of 12,806 mg/L) against Macrocyclops albidus. This last figure was the limit for the larvicidal field assessment; while for the repellent evaluation was used double the minimum indication (0.4 μL/cm2). CREO was tested per se as larvicidal agent, and emulsified for both repellent and larvicidal field activity. The emulsified CREO's spatial repellent assessment showed maximum efficacy of 86% in day 1 that gradually declined in the following 2 days (81%, 69%). Both emulsified and crude CREO proved to be efficient larvicidal agents, with crude CREO (3 weeks) overrunning slightly the emulsified (2 weeks) in terms of endurance. Conclusively, CREO in its emulsified form may be considered as a promising mosquito larvicidal and repellent agent, applicable in both precautionary and emergency response measures

    Geographic distribution of the V1016G knockdown resistance mutation in aedes albopictus. A warning bell for Europe

    Get PDF
    Background: Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise.Methods: Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries.Results: The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations.Conclusions: The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities

    Feasibility, acceptability, and effectiveness of non-pharmaceutical interventions against infectious diseases among crisis-affected populations: a scoping review

    Get PDF
    BACKGROUND: Colonization of large part of Europe by the Asian tiger mosquito Aedes albopictus is causing autochthonous transmission of chikungunya and dengue exotic arboviruses. While pyrethroids are recommended only to reduce/limit transmission, they are widely implemented to reduce biting nuisance and to control agricultural pests, increasing the risk of insurgence of resistance mechanisms. Worryingly, pyrethroid resistance (with mortality < 70%) was recently reported in Ae. albopictus populations from Italy and Spain and associated with the V1016G point mutation in the voltage-sensitive sodium channel gene conferring knockdown resistance (kdr). Genotyping pyrethroid resistance-associated kdr mutations in field mosquito samples represents a powerful approach to detect early signs of resistance without the need for carrying out phenotypic bioassays which require availability of live mosquitoes, dedicated facilities and appropriate expertise. METHODS: Here we report results on the PCR-genotyping of the V1016G mutation in 2530 Ae. albopictus specimens from 69 sampling sites in 19 European countries. RESULTS: The mutation was identified in 12 sites from nine countries (with allele frequencies ranging from 1 to 8%), mostly distributed in two geographical clusters. The western cluster includes Mediterranean coastal sites from Italy, France and Malta as well as single sites from both Spain and Switzerland. The eastern cluster includes sites on both sides of the Black Sea in Bulgaria, Turkey and Georgia as well as one site from Romania. These results are consistent with genomic data showing high connectivity and close genetic relationship among West European populations and a major barrier to gene flow between West European and Balkan populations. CONCLUSIONS: The results of this first effort to map kdr mutations in Ae. albopictus on a continental scale show a widespread presence of the V1016G allele in Europe, although at lower frequencies than those previously reported from Italy. This represents a wake-up call for mosquito surveillance programs in Europe to include PCR-genotyping of pyrethroid resistance alleles, as well as phenotypic resistance assessments, in their routine activities

    The TAL Effector PthA4 Interacts with Nuclear Factors Involved in RNA-Dependent Processes Including a HMG Protein That Selectively Binds Poly(U) RNA

    Get PDF
    Plant pathogenic bacteria utilize an array of effector proteins to cause disease. Among them, transcriptional activator-like (TAL) effectors are unusual in the sense that they modulate transcription in the host. Although target genes and DNA specificity of TAL effectors have been elucidated, how TAL proteins control host transcription is poorly understood. Previously, we showed that the Xanthomonas citri TAL effectors, PthAs 2 and 3, preferentially targeted a citrus protein complex associated with transcription control and DNA repair. To extend our knowledge on the mode of action of PthAs, we have identified new protein targets of the PthA4 variant, required to elicit canker on citrus. Here we show that all the PthA4-interacting proteins are DNA and/or RNA-binding factors implicated in chromatin remodeling and repair, gene regulation and mRNA stabilization/modification. The majority of these proteins, including a structural maintenance of chromosomes protein (CsSMC), a translin-associated factor X (CsTRAX), a VirE2-interacting protein (CsVIP2), a high mobility group (CsHMG) and two poly(A)-binding proteins (CsPABP1 and 2), interacted with each other, suggesting that they assemble into a multiprotein complex. CsHMG was shown to bind DNA and to interact with the invariable leucine-rich repeat region of PthAs. Surprisingly, both CsHMG and PthA4 interacted with PABP1 and 2 and showed selective binding to poly(U) RNA, a property that is novel among HMGs and TAL effectors. Given that homologs of CsHMG, CsPABP1, CsPABP2, CsSMC and CsTRAX in other organisms assemble into protein complexes to regulate mRNA stability and translation, we suggest a novel role of TAL effectors in mRNA processing and translational control

    Modulation of Poly(A)-specific Ribonuclease (PARN): Current Knowledge and Perspectives

    No full text
    Deadenylation is the exoribonucleolytic shortening of eukaryotic poly(A) tails. It is often the first and rate-limiting step for mRNA decay and translational silencing. The process is catalysed by a diversity of deadenylases, which provide robust and flexible means to control mRNA levels and gene expression. Poly(A)-specific ribonuclease (PARN) is a major mammalian deadenylase and the only known to concurrently bind the 5'cap-structure and the 3'poly(A), thus enhancing the degradation rate and amplifying its processivity. PARN is important during oocyte maturation, embryogenesis, early development, DNA damage, and in cell-cycle progression, but also in processes beyond mRNA metabolism, such as the maturation of snoRNAs. The enzyme also participates in nonsense-mediated mRNA decay and in the regulation of cytoplasmic polyadenylation. Importantly, PARN is involved in the degradation of several cancer-related genes, while its expression is altered in cancer. Apart from the direct interaction with the cap structure, several strategies regulate PARN activity, such as phosphorylation, interaction with RNA-binding proteins (RBPs), and natural nucleotides. Recent studies have focused on the regulation of its activity by synthetic nucleoside analogues with therapeutic potential. In this context, the wide repertoire of RBPs and molecules that regulate PARN activity, together with the established role of deadenylases in miRNA-mediated regulation of mRNA expression, suggest that mRNA turnover is more complex than it was previously thought and PARN holds a key role in this process. In this review, we highlight the importance of PARN during RNA's lifecycle and discuss clinical perspectives of modulating its activity
    corecore