43 research outputs found

    Recurrent allopolyploidizations diversify ecophysiological traits in marsh orchids (Dactylorhiza majalis s.l.).

    Get PDF
    Whole-genome duplication has shaped the evolution of angiosperms and other organisms, and is important for many crops. Structural reorganization of chromosomes and repatterning of gene expression are frequently observed in allopolyploids, with physiological and ecological consequences. Recurrent origins from different parental populations are widespread among polyploids, resulting in an array of lineages that provide excellent models to uncover mechanisms of adaptation to divergent environments in early phases of polyploid evolution. We integrate here transcriptomic and ecophysiological comparative studies to show that sibling allopolyploid marsh orchid species (Dactylorhiza, Orchidaceae) occur in different habitats (low nutrient fens vs. meadows with mesic soils) and are characterized by a complex suite of intertwined, pronounced ecophysiological differences between them. We uncover distinct features in leaf elemental chemistry, light-harvesting, photoprotection, nutrient transport and stomata activity of the two sibling allopolyploids, which appear to match their specific ecologies, in particular soil chemistry differences at their native sites. We argue that the phenotypic divergence between the sibling allopolyploids has a clear genetic basis, generating ecological barriers that maintain distinct, independent lineages, despite pervasive interspecific gene flow. This suggests that recurrent origins of polyploids bring about a long-term potential to trigger and maintain functional and ecological diversity in marsh orchids and other groups

    The Right to Code and Share Arms

    Get PDF
    Glycerol is, to date, the most widely used cryoprotectant to freeze stallion spermatozoa at concentrations between 2% and 5%. Cryoprotectant toxicity has been claimed to be the single most limiting factor for the success of cryopreservation. In order to evaluate the toxic effects of the concentrations of glycerol used in practice, stallion spermatozoa were incubated in Biggers Whitten and Whittingham (BWW) media supplemented with 0%, 0.5%, 1.5%, 2.5%, 3.5%, and 5% glycerol. In two additional experiments, a hyposmotic (75 mOsm/kg) and a hyperosmotic (900 mOsm/kg) control media were included. Sperm parameters evaluated included cell volume, membrane integrity, lipid peroxidation, caspase 3, 7, and 8 activation, mitochondrial membrane potential, and integrity of the cytoskeleton. Glycerol exerted toxicity at concentrations 3.5% and the maximal toxicity was observed at 5%. The actin cytoskeleton was especially sensitive to glycerol presence, inducing rapid F actin depolymerization at concentrations over 1.5%. The sperm membrane and the mitochondria were other structures affected. The toxicity of glycerol is apparently related to osmotic and nonosmotic effects. In view of our results the concentration of glycerol in the freezing media for stallion spermatozoa should not surpass 2.5%.Funding Agencies|Ministerio de Ciencia e Innovacion-FEDER Madrid, Spain|AGL 2010 20758 (GAN)|Inia|RZ2008-00018-00-00|Junta de Extremadura FEDER GR|10010

    In vitro characterisation of fresh and frozen sex-sorted bull spermatozoa

    Get PDF
    peer-reviewedThis study sought to compare the in vitro characteristics of fresh and frozen non-sorted (NS) and sex-sorted (SS) bull spermatozoa. Experiment 1: Holstein–Friesian ejaculates (n = 10 bulls) were split across four treatments and processed: (1) NS fresh at 3 × 106 spermatozoa, (2) X-SS frozen at 2 × 106 spermatozoa, (3) X-SS fresh at 2 × 106 spermatozoa and (4) X-SS fresh at 1 × 106 spermatozoa. NS frozen controls of 20 × 106 spermatozoa per straw were sourced from previously frozen ejaculates (n = 3 bulls). Experiment 2: Aberdeen Angus ejaculates (n = 4 bulls) were split across four treatments and processed as: (1) NS fresh 3 × 106 spermatozoa, (2) Y-SS fresh at 1 × 106 spermatozoa, (3) Y-SS fresh at 2 × 106 spermatozoa and (4) X-SS fresh at 2 × 106 spermatozoa. Controls were sourced as per Experiment 1. In vitro assessments for progressive linear motility, acrosomal status and oxidative stress were carried out on Days 1, 2 and 3 after sorting (Day 0 = day of sorting. In both experiments SS fresh treatments had higher levels of agglutination in comparison to the NS fresh (P < 0.001), NS frozen treatments had the greatest PLM (P < 0.05) and NS spermatozoa exhibited higher levels of superoxide anion production compared with SS spermatozoa (P < 0.05). Experiment 1 found both fresh and frozen SS treatments had higher levels of viable acrosome-intact spermatozoa compared with the NS frozen treatments (P < 0.01).ACCEPTEDpeer-reviewe

    Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex

    Get PDF
    Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.UE FWF; P22260UE: Y66

    Hybridization as a threat in climate relict Nuphar pumila (Nymphaeaceae)

    Get PDF
    Field studies and conceptual work on hybridization-mediated extinction risk in climate relicts are extremely rare. Nuphar pumila (Nymphaeaceae) is one of the most emblematic climate relicts in Europe with few isolated populations in the Alpine arc. The extent of introgression with related lowland and generalist species Nupharlutea has never been studied using molecular methods. All biogeographical regions where N.pumila naturally occurs in the neighbourhood of the Alpine arc were sampled and studied using nuclear microsatellite markers. Furthermore, we used forward-in-time simulations and Approximate Bayesian Computation to check whether an introgression scenario fits with the observed admixture patterns and estimated the demographic parameters associated with this process. Our study confirms ongoing hybridization between N.pumila and N.lutea and validates it by the use of population models. More than 40 % of investigated N.pumila individuals were admixed and hybrids were found in over 60 % of studied populations. The introgression is bidirectional and is most likely a result of very recent gene flow. Our work provides strong evidence for rapid extinction risk and demographic swamping between specialized climatic relicts and closely related generalists. The remaining pure populations of N.pumila are rare in the Alpine arc and deserve high conservation priority

    Genetic differentiation and admixture between sibling allopolyploids in the Dactylorhiza majalis complex.

    No full text
    Allopolyploidization often happens recurrently, but the evolutionary significance of its iterative nature is not yet fully understood. Of particular interest are the gene flow dynamics and the mechanisms that allow young sibling polyploids to remain distinct while sharing the same ploidy, heritage and overlapping distribution areas. By using eight highly variable nuclear microsatellites, newly reported here, we investigate the patterns of divergence and gene flow between 386 polyploid and 42 diploid individuals, representing the sibling allopolyploids Dactylorhiza majalis s.s. and D. traunsteineri s.l. and their parents at localities across Europe. We make use in our inference of the distinct distribution ranges of the polyploids, including areas in which they are sympatric (that is, the Alps) or allopatric (for example, Pyrenees with D. majalis only and Britain with D. traunsteineri only). Our results show a phylogeographic signal, but no clear genetic differentiation between the allopolyploids, despite the visible phenotypic divergence between them. The results indicate that gene flow between sibling Dactylorhiza allopolyploids is frequent in sympatry, with potential implications for the genetic patterns across their entire distribution range. Limited interploidal introgression is also evidenced, in particular between D. incarnata and D. traunsteineri. Altogether the allopolyploid genomes appear to be porous for introgression from related diploids and polyploids. We conclude that the observed phenotypic divergence between D. majalis and D. traunsteineri is maintained by strong divergent selection on specific genomic areas with strong penetrance, but which are short enough to remain undetected by genotyping dispersed neutral markers.Heredity advance online publication, 25 November 2015; doi:10.1038/hdy.2015.98
    corecore