209 research outputs found

    Understanding sulfonated kraft lignin re-polymerization by ultrafast reactions in supercritical water

    Get PDF
    Producción CientíficaRe-polymerization reactions are a commonly reported issue on the way to the higher recovery of monomers from lignin. The reactivity of monomers obtained from lignin depolymerization and their contribution to the re-polymerization in supercritical water (SCW) was investigated. Sulfonated Kraft lignin (SKL) was used along with four monomers: vanillin, vanillic acid, vanillyl alcohol and acetovanillone. Indulin Kraft lignin was also employed as the reference to understand the re-polymerization of SKL in SCW. The formation of diarylmethane structures was detected in HSQC spectra of solid residue after the SCW process. Lignin released fragments with free phenolic β-O-4 structures, as well as the monomeric product vanillyl alcohol are involved with the formation of o-o´ and o-p´ diarylmethane structures. Chemical structure of Kraft lignin and its polymeric product after the SCW process was remarkably similar, as shown by HSQC, indicating that re-polymerization reactions occur through cross-linking polymerization, mainly in their fractions of low molecular weight products.Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (projects CTQ2016-79777-R and PID2019-105975GB-I00)Junta de Castilla y León (project CLU-2019-04 T

    Exploring Alkyl-O-Alkyl Ether Structures in Softwood Milled Wood Lignins

    Get PDF
    Recent studies have suggested that there are significant amounts of various alkyl ether (Alk-O-Alk; Alk = alkyl) moieties in a spruce native lignin preparation, milled wood lignin (SMWL). However, the comprehensive NMR assignment to these moieties has not been addressed yet. This study focused on investigating different types of Alk-O-Alk structures at the alpha-and gamma-positions of the lignin side chain in an heteronuclear single-quantum coherence (HSQC) spectrum of SMWL using experimental NMR data of lignin and synthesized model compounds. Ambiguous structural features were predicted by computer simulation of 1H and 13C NMR spectra to complement the experimental NMR data. As a result, specific regions in the HSQC spectrum were attributed to different Alk-O-Alk moieties of Alk-O-Alk/beta-O-4 and Alk-O-Alk/beta-beta ' structures. However, the differences between the specific regions were rather subtle; they were not well separated from each other and some major lignin moieties. Furthermore, SMWL contained a large variety of Alk-O-Alk moieties but in minute individual amounts, resulting in rather broad, superimposing resonances. Thus, evaluation did not allow assigning individual types of Alk-O-Alk moieties from the HSQC spectra; instead, they were quantified as total (alpha-and gamma-linked) Alk-O-Alk based on the balance of structural units in the 13C NMR spectra. At last, potential formation mechanisms of various Alk-O-Alk ether structures in lignin biosynthesis, lignin aging, and during ball milling of wood were and discussed.Peer reviewe

    Polyoxometalates as mediators in the laccase catalyzed delignification

    Get PDF
    The polyoxometalate (POM)-laccase catalytic system was applied for the first time to aerobic delignification of kraft pulps at moderate (40-60 degreesC) temperatures. Laccase was found to readily catalyze the re-oxidation of different kinds of polyoxometalates, including those, which cannot be re-oxidized by dioxygen even at high temperatures (PMo11V1, SiW11V1. etc.). This allows a sequence of catalytic redox cycles similar to that in the laccase-mediator system (LMS) where electrons are transferred from the substrate (lignin) via POM and laccase to oxygen. Results obtained showed that the POM-laccase system could decrease kappa number of eucalypt kraft pulp from 13.7 to 8.5 though the reaction rate is relatively slow. Among different POM used, SiW11V showed the best results. The effect of the process variables on the delignification was studied. The best results in delignification of eucalypt pulp were obtained at 60 degreesC, oxygen pressure of 5 bar, pH 6.3, SiW11V concentration of 4.2 mM and laccase concentration of 0.65 U/ml. The reaction temperature appears to be one of the crucial factors in the achievement of a delignification rate acceptable for practical application. (C) 2001 Elsevier Science B.V. All rights reserved

    A feasibility study on green biorefinery of high lignin content agro-food industry waste through supercritical water treatment

    Get PDF
    Producción CientíficaThis work discusses hydrolysis of defatted grape in supercritical water (SCW) at 380 °C and 260 bar from 0.18 s to 1 s focusing attention to sugars recovery in the liquid phase of the product and detailed characterization of remaining solid phase enriched in polyaromatics (e.g. lignin, flavonoids, etc.). After the longest reaction time of 1 s, 56% of carbohydrates could be recovered in the liquid phase, as a result of carbohydrate hydrolysis. The high content of insoluble lignin in biomass (36%), acts as a mass transfer limitation and presents an important feature in the hydrolysis process, slowing down the conversion of carbohydrate fraction, as after the maximum time of 1s, 10% of carbohydrates still remained in the solid phase. Milled wood lignin, extracted from biomass and dioxane extract from the solid phase were characterized in order to understand the main structural changes during the SCW hydrolysis process. Dioxane (80%) extraction of solids produces a very complex mixture of lipophilic extractives, flavonoids and lignin with a certain amount of chemically linked carbohydrates. 2D NMR analysis of dioxane extract shows remarkably subtle changes in the amounts of main lignin moieties (β-O-4′, β-β’ (resinol) and β-5 (phenylcoumaran)). This subtle change of the main lignin structures is an important feature in the further valorisation of this sulfur-free lignin residue.Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (projects CTQ2016-79777-R and PID2019-105975 GB-I00)Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (project VA277P18

    Nativity of lignin carbohydrate bonds substantiated by biomimetic synthesis

    Get PDF
    The question of whether lignin is covalently linked to carbohydrates in native wood, forming what is referred to as lignin-carbohydrate complexes (LCCs), still lacks unequivocal proof. This is mainly due to the need to isolate lignin from woody materials prior to analysis, under conditions leading to partial chemical modification of the native wood polymers. Thus, the correlation between the structure of the isolated LCCs and LCCs in situ remains open. As a way to circumvent the problematic isolation, biomimicking lignin polymerization in vivo and in vitro is an interesting option. Herein, we report the detection of lignin-carbohydrate bonds in the extracellular lignin formed by tissue-cultured Norway spruce cells, and in modified biomimetic lignin synthesis (dehydrogenation polymers). Semi-quantitative 2D heteronuclear singular quantum coherence (HSQC)-, P-31 -, and C-13-NMR spectroscopy were applied as analytical tools. Combining results from these systems, four types of lignin-carbohydrate bonds were detected; benzyl ether, benzyl ester, gamma-ester, and phenyl glycoside linkages, providing direct evidence of lignin-carbohydrate bond formation in biomimicked lignin polymerization. Based on our findings, we propose a sequence for lignin-carbohydrate bond formation in plant cell walls.Peer reviewe

    Machine Learning Optimization of Lignin Properties in Green Biorefineries

    Get PDF
    Novel biorefineries could transform lignin, an abundant biopolymer, from side-stream waste to high-value-added byproducts at their site of production and with minimal experiments. Here, we report the optimization of the AquaSolv omni biorefinery for lignin using Bayesian optimization, a machine learning framework for sample-efficient and guided data collection. This tool allows us to relate the biorefinery conditions like hydrothermal pretreatment reaction severity and temperature with multiple experimental outputs, such as lignin structural features characterized using 2D nuclear magnetic resonance spectroscopy. By applying a Pareto front analysis to our models, we can find the processing conditions that simultaneously optimize the lignin yield and the amount of beta-O-4 linkages for the depolymerization of lignin into platform chemicals. Our study demonstrates the potential of machine learning to accelerate the development of sustainable chemical processing techniques for targeted applications and products

    Phlorotannin Composition of Laminaria digitata

    Get PDF
    Introduction: Phlorotannins are complex mixtures of phloroglucinol oligomers connected via C-C (fucols) or C-O-C (phlorethols) linkages. Their uniformity in subunits and large molecular weight hamper their structural analysis. Despite its commercial relevance for alginate extraction, phlorotannins in Laminaria digitata have not been studied. Objective: To obtain quantitative and structural information on phlorotannins in a methanolic extract from L. digitata. Methodology: The combined use of 13C and 1H NMR spectroscopy allowed characterisation of linkage types and extract purity. The purity determined was used to calibrate the responses obtained with the colorimetric 2,4-dimethoxybenzaldehyde (DMBA) and Folin-Ciocalteu (FC) assays. Using NP-flash chromatography, phlorotannin fractions separated on oligomer size were obtained and enabled structural and molecular weight characterisation using ESI-MS and MALDI-TOF-MS. Results: The fucol-to-phlorethol linkage ratio was 1:26 and the extract was 60.1% pure, determined by NMR spectroscopy. For DMBA, the response of the extract was 12 times lower than that of phloroglucinol, whereas there was no difference for FC. By accounting for differences in response, the colorimetric assays were applicable for quantification using phloroglucinol as a standard. The phlorotannin content was around 4.5% DM. Fucol- and phlorethol-linkage types were annotated based on characteristic MSn fragmentations. Structural isomers of phlorotannins up to a degree of polymerisation of 18 (DP18) were annotated and identification of several isomers hinted at branched phloroglucinol oligomers. With MALDI-TOF-MS phlorotannins up to DP27 were annotated. Conclusion: By combining several analytical techniques, phlorotannins in L. digitata were quantified and characterised with respect to fucol-to-phlorethol linkage ratio, molecular weight (distribution), and occurrence of structural isomers.</p

    Application of mild autohydrolysis to facilitate the dissolution of wood chips in direct-dissolution solvents

    Get PDF
    Wood is not fully soluble in current non-derivatising direct-dissolution solvents, contrary to the many reports in the literature quoting wood 'dissolution' in ionic liquids. Herein, we demonstrate that the application of autohydrolysis, as a green and economical wood pre-treatment method, allows for a massive increase in solubility compared to untreated wood. This is demonstrated by the application of two derivitising methods (phosphitylation and acetylation), followed by NMR analysis, in the cellulose-dissolving ionic liquids 1-allyl-3-methylimidazolium chloride ([amim]Cl) and 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH][OAc]. In addition, the non-derivitising tetrabutylphosphonium acetate ([P-4444][OAc]) : DMSO-d6 electrolyte also allowed for dissolution of the autohydrolysed wood samples. By combination of different particle sizes and P-factors (autohydrolysis intensity), it has been clearly demonstrated that the solubility of even wood chips can be drastically increased by application of autohydrolysis. The physiochemical factors affecting wood solubility after autohydrolysis are also discussed.Peer reviewe

    Label-free in situ imaging of lignification in the cell wall of low lignin transgenic Populus trichocarpa

    Get PDF
    Chemical imaging by confocal Raman microscopy has been used for the visualization of the cellulose and lignin distribution in wood cell walls. Lignin reduction in wood can be achieved by, for example, transgenic suppression of a monolignol biosynthesis gene encoding 4-coumarate-CoA ligase (4CL). Here, we use confocal Raman microscopy to compare lignification in wild type and lignin-reduced 4CL transgenic Populus trichocarpa stem wood with spatial resolution that is sub-μm. Analyzing the lignin Raman bands in the spectral region between 1,600 and 1,700 cm−1, differences in lignin signal intensity and localization are mapped in situ. Transgenic reduction of lignin is particularly pronounced in the S2 wall layer of fibers, suggesting that such transgenic approach may help overcome cell wall recalcitrance to wood saccharification. Spatial heterogeneity in the lignin composition, in particular with regard to ethylenic residues, is observed in both samples

    Assessing the efficiency of robot communication

    Get PDF
    A model is proposed for estimating the efficiency of communication by robots capable of social interaction with humans. A generalized index of the robots effectiveness in communication is derived. That index is calculated by means of a fuzzy deduction modul
    corecore