16 research outputs found

    A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility

    Get PDF
    We conducted a large-scale genetic analysis on giant cell arteritis (GCA), a polygenic immune-mediated vasculitis. A case-control cohort, comprising 1,651 case subjects with GCA and 15,306 unrelated control subjects from six different countries of European ancestry, was genotyped by the Immunochip array. We also imputed HLA data with a previously validated imputation method to perform a more comprehensive analysis of this genomic region. The strongest association signals were observed in the HLA region, with rs477515 representing the highest peak (p = 4.05 × 10−40, OR = 1.73). A multivariate model including class II amino acids of HLA-DRβ1 and HLA-DQα1 and one class I amino acid of HLA-B explained most of the HLA association with GCA, consistent with previously reported associations of classical HLA alleles like HLA-DRB1∗04. An omnibus test on polymorphic amino acid positions highlighted DRβ1 13 (p = 4.08 × 10−43) and HLA-DQα1 47 (p = 4.02 × 10−46), 56, and 76 (both p = 1.84 × 10−45) as relevant positions for disease susceptibility. Outside the HLA region, the most significant loci included PTPN22 (rs2476601, p = 1.73 × 10−6, OR = 1.38), LRRC32 (rs10160518, p = 4.39 × 10−6, OR = 1.20), and REL (rs115674477, p = 1.10 × 10−5, OR = 1.63). Our study provides evidence of a strong contribution of HLA class I and II molecules to susceptibility to GCA. In the non-HLA region, we confirmed a key role for the functional PTPN22 rs2476601 variant and proposed other putative risk loci for GCA involved in Th1, Th17, and Treg cell function

    Analysis of allelic expression patterns of IL-2, IL-3, IL-4, and IL-13 in human CD4+ T cell clones

    No full text
    The occurrence of monoallelic expression of cytokine genes in single cells has been convincingly demonstrated, but there have been few reports of this phenomenon in T cell clones. Here we describe studies on the expression of alleles of the human genes encoding IL-2, IL-3, IL-4, and IL-13 in human CD4(+) T cell clones. In contrast to the results reported in mouse T cell clones and single human T cells, we found no evidence for the monoallelic expression of the IL-2, IL-3, and IL-13 genes. The gene for IL-4 showed an imbalance in expression from each allele, indicating differential expression of IL-4 alleles within or between IL-4-expressing cell

    A novel phenotype of a hepatocyte nuclear factor homeobox A (HNF1A) gene mutation, presenting with neonatal cholestasis

    No full text
    We report a novel phenotype of a hepatocyte nuclear factor homeobox A (HNF1A) mutation (heterozygote c.130dup, p.Leu44fs) presenting with transient neonatal cholestasis, subsequently followed by persistent elevation of transaminases, maturity-onset diabetes of the young (MODY) type 3 and hepatocellular adenomas. This case report demonstrates that clinical and histological symptoms of HNF1A mutations can present as early as infancy. We recommend screening for HNF1A mutations in patients presenting with otherwise unexplained, non-obstructive, neonatal cholestasis. Based on the location and type of the HNF1A mutations, patients should be screened for development of diabetes and pre-symptomatic hepatocellular adenomas

    Immunomodulatory dendritic cells inhibit Th1 responses and arthritis via different mechanisms

    No full text
    Dendritic cells (DCs) are professional APCs which have the unique ability to present both foreign and self-Ags to T cells and steer the outcome of immune responses. Because of these characteristics, DCs are attractive vehicles for the delivery of therapeutic vaccines. Fully matured DCs are relatively well-defined and even used in clinical trials in cancer. DCs also have the potential to influence the outcome of autoimmunity by modulating the underlying autoimmune response. To gain a better appreciation of the abilities and mechanisms by which immunomodulatory DCs influence the outcome of T cell responses, we studied several immunomodulatory DCs (TNF-, IL-10-, or dexamethasone-stimulated bone marrow-derived DCs) side by side for their ability to modulate T cell responses and autoimmune diseases. Our data show that these differentially modulated DCs display a different composition of molecules involved in T cell activation. Although, all DC subsets analyzed were able to inhibit the induction of collagen-induced arthritis, the modulation of the underlying immune response was different. Vaccination with TNF- or IL-10-modulated DCs altered the Th1/Th2 balance as evidenced by the induction of IL-5- and IL-10-secreting T cells and the concomitant reduction of the IgG2a-IgG1 ratio against the immunizing Ag. In contrast, DCs modulated with dexamethasone did not affect the ratio of IL-5-producing vs IFN-gamma-producing T cells and tended to affect the Ab response in a nonspecific manner. These data indicate that distinct mechanisms can be used by distinct DC subsets to change the outcome of autoimmunit

    Allele-specific expression of the IL-1 alpha gene in human CD4+ T cell clones

    No full text
    A number of reports have described the monoallelic expression of murine cytokine genes. Here we describe the monoallelic expression of the human IL-1alpha gene in CD4+ T cells. Analysis of peripheral blood T cell clones derived from healthy individuals revealed that the IL-1alpha gene shows predominantly monoallelic expression. Monoallelic expression was observed in Th0, Th1, and Th2 cell clones. In addition, we demonstrate monoallelic expression in T cell clones from rheumatoid arthritis patients derived from synovial fluid of the knee joint, suggesting that the occurrence of this phenomenon is not different from that in clones derived from healthy individuals. The finding of monoallelic expression of a cytokine gene in human CD4+ T cell clones provides evidence for allele-specific silencing/activation as another layer of regulation of IL-1alpha gene expressio

    Persistently activated, proliferative memory autoreactive B cells promote inflammation in rheumatoid arthritis

    No full text
    Autoreactive B cells mediate autoimmune pathology, but exactly how remains unknown. A hallmark of rheumatoid arthritis (RA), a common autoimmune disease, is the presence of disease-specific anticitrullinated protein antibodies (ACPAs). Here, we showed that ACPA-positive B cells in patients with RA strongly expressed T cell-stimulating ligands, produced abundant proinflammatory cytokines, and were proliferative while escaping inhibitory signals. This activated state was found at different degrees in different stages of disease: highest in patients with recent-onset RA, moderate in patients with established RA, and far less pronounced in ACPA-positive individuals "at risk" for developing disease. The activated autoreactive B cell response persisted in patients who achieved clinical remission with conventional treatment. ACPA-positive B cells in blood and synovial fluid secreted increased amounts of the chemoattractant interleukin-8, which attracted neutrophils, the most abundant immune cell in arthritic joints. Tetanus toxoid-specific B cells from the same patients exhibited properties of memory B cells without the activation and proliferation phenotype, but these cells transiently acquired a similar proliferative phenotype upon booster vaccination. Together, these data indicated that continuous antigenic triggering of autoreactive B cells occurs in human autoimmune disease and support the emerging concept of immunological activity that persists under treatment even in clinical remission, which may revise our current concept of treatment targets for future therapeutic interventions. In addition, our data pointed to a pathogenic role of ACPA-positive B cells in the inflammatory disease process underlying RA and favor approaches that aim at their antigen-specific inactivation or depletion
    corecore