185 research outputs found

    Finite size effects in quantum field theories with boundary from scattering data

    Get PDF
    We derive a relation between leading finite size corrections for a 1+1 dimensional quantum field theory on a strip and scattering data, which is very similar in spirit to the approach pioneered by Luscher for periodic boundary conditions. The consistency of the results is tested both analytically and numerically using thermodynamic Bethe Ansatz, Destri-de Vega nonlinear integral equation and classical field theory techniques. We present strong evidence that the relation between the boundary state and the reflection factor one-particle couplings, noticed earlier by Dorey et al. in the case of the Lee-Yang model extends to any boundary quantum field theory in 1+1 dimensions.Comment: 24 pages, 1 eps figure. Clarifying comments and a reference adde

    A2 Toda theory in reduced WZNW framework and the representations of the W algebra

    Get PDF
    Using the reduced WZNW formulation we analyse the classical WW orbit content of the space of classical solutions of the A2A_2 Toda theory. We define the quantized Toda field as a periodic primary field of the WW algebra satisfying the quantized equations of motion. We show that this local operator can be constructed consistently only in a Hilbert space consisting of the representations corresponding to the minimal models of the WW algebra.Comment: 38 page

    Explicit boundary form factors: the scaling Lee-Yang model

    Get PDF
    We provide explicit expressions for boundary form factors in the boundary scaling Lee-Yang model for operators with the mildest ultraviolet behavior for all integrable boundary conditions. The form factors of the boundary stress tensor take a determinant form, while the form factors of the boundary primary field contain additional explicit polynomials.Comment: 18 pages, References adde

    Boundary one-point function, Casimir energy and boundary state formalism in D+1 dimensional QFT

    Get PDF
    We consider quantum field theories with boundary on a codimension one hyperplane. Using 1+1 dimensional examples, we clarify the relation between three parameters characterising one-point functions, finite size corrections to the ground state energy and the singularity structure of scattering amplitudes, respectively. We then develop the formalism of boundary states in general D+1 spacetime dimensions and relate the cluster expansion of the boundary state to the correlation functions using reduction formulae. This allows us to derive the cluster expansion in terms of the boundary scattering amplitudes, and to give a derivation of the conjectured relations between the parameters in 1+1 dimensions, and their generalization to D+1 dimensions. We use these results to express the large volume asymptotics of the Casimir effect in terms of the one-point functions or alternatively the singularity structure of the one-particle reflection factor, and for the case of vanishing one-particle couplings we give a complete proof of our previous result for the leading behaviour.Comment: 32 pages, 1 eps figure

    On the boundary form factor program

    Get PDF
    Boundary form factor axioms are derived for the matrix elements of local boundary operators in integrable 1+1 dimensional boundary quantum field theories using the analyticity properties of correlators via the boundary reduction formula. Minimal solutions are determined for the integrable boundary perturbations of the free boson, free fermion (Ising), Lee-Yang and sinh-Gordon models and the two point functions calculated from them are checked against the exact solutions in the free cases and against the conformal data in the ultraviolet limit for the Lee-Yang model. In the case of the free boson/fermion the dimension of the solution space of the boundary form factor equation is shown to match the number of independent local operators. We obtain excellent agreement which proves not only the correctness of the solutions but also confirms the form factor axioms.Comment: 38 pages, 17 eps figures, LaTeX, References adde

    Finite volume form factors in the presence of integrable defects

    Get PDF
    We developed the theory of finite volume form factors in the presence of integrable defects. These finite volume form factors are expressed in terms of the infinite volume form factors and the finite volume density of states and incorporate all polynomial corrections in the inverse of the volume. We tested our results, in the defect Lee-Yang model, against numerical data obtained by truncated conformal space approach (TCSA), which we improved by renormalization group methods adopted to the defect case. To perform these checks we determined the infinite volume defect form factors in the Lee-Yang model exactly, including their vacuum expectation values. We used these data to calculate the two point functions, which we compared, at short distance, to defect CFT. We also derived explicit expressions for the exact finite volume one point functions, which we checked numerically. In all of these comparisons excellent agreement was found.Comment: pdflatex, 34 pages, many figure

    Nonperturbative study of the two-frequency sine-Gordon model

    Get PDF
    The two-frequency sine-Gordon model is examined. The focus is mainly on the case when the ratio of the frequencies is 1/2, given the recent interest in the literature. We discuss the model both in a perturbative (form factor perturbation theory) and a nonperturbative (truncated conformal space approach) framework, and give particular attention to a phase transition conjectured earlier by Delfino and Mussardo. We give substantial evidence that the transition is of second order and that it is in the Ising universality class. Furthermore, we check the UV-IR operator correspondence and conjecture the phase diagram of the theory.Comment: Minor corrections, LaTeX2e, 39 pages, 26 figures (4 pslatex, 1 postscript and 21 eps

    Scaling function in AdS/CFT from the O(6) sigma model

    Get PDF
    Asymptotic behavior of the anomalous dimensions of Wilson operators with high spin and twist is governed in planar N=4 SYM theory by the scaling function which coincides at strong coupling with the energy density of a two-dimensional bosonic O(6) sigma model. We calculate this function by combining the two-loop correction to the energy density for the O(n) model with two-loop correction to the mass gap determined by the all-loop Bethe ansatz in N=4 SYM theory. The result is in agreement with the prediction coming from the thermodynamical limit of the quantum string Bethe ansatz equations, but disagrees with the two-loop stringy corrections to the folded spinning string solution.Comment: 25 pages, 2 figure

    Geometry of W-algebras from the affine Lie algebra point of view

    Get PDF
    To classify the classical field theories with W-symmetry one has to classify the symplectic leaves of the corresponding W-algebra, which are the intersection of the defining constraint and the coadjoint orbit of the affine Lie algebra if the W-algebra in question is obtained by reducing a WZNW model. The fields that survive the reduction will obey non-linear Poisson bracket (or commutator) relations in general. For example the Toda models are well-known theories which possess such a non-linear W-symmetry and many features of these models can only be understood if one investigates the reduction procedure. In this paper we analyze the SL(n,R) case from which the so-called W_n-algebras can be obtained. One advantage of the reduction viewpoint is that it gives a constructive way to classify the symplectic leaves of the W-algebra which we had done in the n=2 case which will correspond to the coadjoint orbits of the Virasoro algebra and for n=3 which case gives rise to the Zamolodchikov algebra. Our method in principle is capable of constructing explicit representatives on each leaf. Another attractive feature of this approach is the fact that the global nature of the W-transformations can be explicitly described. The reduction method also enables one to determine the ``classical highest weight (h. w.) states'' which are the stable minima of the energy on a W-leaf. These are important as only to those leaves can a highest weight representation space of the W-algebra be associated which contains a ``classical h. w. state''.Comment: 17 pages, LaTeX, revised 1. and 7. chapter
    • …
    corecore