
ar
X

iv
:h

ep
-t

h/
06

03
17

1v
2 

 2
1 

M
ay

 2
00

6

On the boundary form fa
tor program

Z. Bajnok

1
, L. Palla

2
, and G. Taká
s

1

13th O
tober 2018

1
Theoreti
al Physi
s Resear
h Group, Hungarian A
ademy of S
ien
es,

1117 Budapest, Pázmány Péter sétány 1/A, Hungary

2
Institute for Theoreti
al Physi
s, Eötvös University,

1117 Budapest, Pázmány Péter sétány 1/A, Hungary

Abstra
t

Boundary form fa
tor axioms are derived for the matrix elements of lo
al boundary

operators in integrable 1+1 dimensional boundary quantum �eld theories using the

analyti
ity properties of 
orrelators via the boundary redu
tion formula. Minimal

solutions are determined for the integrable boundary perturbations of the free boson,

free fermion (Ising), Lee-Yang and sinh-Gordon models and the two point fun
tions


al
ulated from them are 
he
ked against the exa
t solutions in the free 
ases and

against the 
onformal data in the ultraviolet limit for the Lee-Yang model. In the


ase of the free boson/fermion the dimension of the solution spa
e of the boundary

form fa
tor equation is shown to mat
h the number of independent lo
al operators.

We obtain ex
ellent agreement whi
h proves not only the 
orre
tness of the solutions

but also 
on�rms the form fa
tor axioms.

1 Introdu
tion

The bootstrap program aims to 
lassify and expli
itly solve 1+1 dimensional integrable

quantum �eld theories by 
onstru
ting all of their Wightman fun
tions. The �rst stage is

the S-matrix bootstrap: the s
attering matrix, 
onne
ting asymptoti
 in and out states,

is determined from its properties su
h as fa
torizability, unitarity, 
rossing symmetry and

the Yang-Baxter equation (YBE) supplemented by the maximal analyti
ity assumption.

The result is the 
omplete on-shell solution of the theory, i.e. the spe
trum of ex
itations

and their s
attering amplitudes, whi
h 
an be related to some independent de�nition of

the model as a perturbed 
onformal �eld theory or a Lagrangian QFT (for reviews see

[1, 2℄). The se
ond step is the form fa
tor bootstrap, whi
h allows one to determine

matrix elements of lo
al operators between asymptoti
 states using their analyti
 properties
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originating from the already known S-matrix. Supposing maximal analyti
ity leads to a set

of solutions ea
h of whi
h 
orresponds to a lo
al operator of the theory. The form fa
tors are

then used to build the 
orrelation (Wightman) fun
tions via their spe
tral representations,

yielding a 
omplete o�-shell des
ription of the theory (see [3, 4℄ for reviews).

The �rst step of an analogous bootstrap program for 1+1 dimensional integrable bound-

ary quantum �eld theories, the boundary R-matrix bootstrap, has been developed for sev-

eral theories. In boundary theories the asymptoti
 states are 
onne
ted by the re�e
tion R-

matrix, whi
h satis�es unitarity and boundary 
rossing unitarity; for integrable boundary

QFT, it also satis�es the boundary YBE (BYBE) and boundary bootstrap requirements.

These equations supplemented by maximal analyti
ity assumptions make possible to de-

termine the re�e
tion matri
es and provide the 
omplete information about the theory on

the mass shell [5℄.

For the se
ond step matrix elements of lo
al operators between asymptoti
 states have

to be 
omputed. In a boundary quantum �eld theory there are two types of operators, the

bulk and the boundary operators, where their names indi
ate their lo
alization point. Due

to the broken translational invarian
e one point fun
tions of bulk operators may a
quire

nontrivial spa
e dependen
e behaving analogously to the two point fun
tions in a bulk

theory. Indeed this one point fun
tion 
an be 
al
ulated in the 
rossed 
hannel, where

the role of time and spa
e is 
hanged and the spatial boundary appears as a temporal

one represented as an initial (boundary) state in the matrix element. Inserting a 
omplete

system of the bulk Hilbert spa
e a spe
tral representation for the one point fun
tions 
an

be obtained in terms of the bulk form fa
tors and the matrix element of the boundary state

[6, 7℄. Trun
ating this expansion at �nite intermediate states provides a 
onvergent large

distan
e expansion. However, matrix elements of boundary operators 
annot be 
omputed

in this way and the purpose of the present paper is to develop a te
hnique to 
ompute their


orrelation fun
tions.

In this paper we initiate the se
ond step of the boundary bootstrap program, namely

the boundary form fa
tor program for 
al
ulating the matrix elements of lo
al boundary

operators between asymptoti
 states. We derive their analyti
 stru
ture from that of the

R-matrix whi
h, when supplemented by the assumption of maximal analyti
ity, leads to

their determination. In the bulk 
ase, it was shown in [8℄ that the solution spa
e of the

form fa
tor equations 
an be brought into one-to-one 
orresponden
e with the operator


ontent of the model. Based on this, we expe
t that the 
lassi�
ation of the solutions of

the boundary form fa
tor axioms provides information on the boundary operator 
ontent

of the theory, whi
h in the ultraviolet limit is in a one-to-one 
orresponden
e with the

Hilbert spa
e of the model. Using the expli
it form of the boundary form fa
tors the

spe
tral representation for the boundary 
orrelation fun
tions 
an be obtained.

The paper is organized as follows: �rst we de�ne the boundary form fa
tors by intro-

du
ing asymptoti
 in and out multi-parti
le states, whi
h are related by the multi-parti
le

re�e
tion matrix. Simple 
rossing relations are presented from whi
h the form fa
tor ax-

ioms follow easily, and then the axioms are veri�ed by some 
onsisten
y requirements. We

outline a general strategy to solve theories with diagonal bulk s
attering and boundary

re�e
tion amplitudes, and to 
ompare the resulting two-point fun
tions with their ultra-
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violet limits. This idea is applied to integrable boundary perturbations of several models,

su
h as the free boson model, free fermion (alias Ising) �eld theory, the s
aling Lee-Yang

model and sinh-Gordon theory. Appendix A 
ontains a heuristi
 derivation of the 
ross-

ing relations from the boundary redu
tion formula [9℄, while in Appendix B we present a

formal derivation of the boundary form fa
tor axioms from the boundary version of the

Faddeev-Zamolod
hikov algebra.

2 Boundary form fa
tors

2.1 De�nitions

The Hilbert spa
e of a boundary quantum �eld theory 
onsists of multi-parti
le states,

whi
h 
an be labeled by the parti
le spe
ies and the 
orresponding parti
le energies. To

simplify the notations we restri
t ourselves to theories 
ontaining only one parti
le type

with a given mass m. In 1+1 dimensions it is 
onvenient to work with the rapidity variable

θi; the energy Ei of the parti
le 
an be written as Ei = m cosh θi, while the momentum

is pi = m sinh θi. Following the evolution of the multi-parti
le state in time to t → −∞
the parti
les get far away form ea
h other and from the boundary, therefore forming an in

state whi
h is equivalent to a free multi-parti
le state and is denoted as

1

|θ1, θ2, . . . , θn〉in ; θ1 > θ2 > · · · > θn > 0

Positivity of all in
oming rapidities is a 
onsequen
e of the assumption that the boundary

is at the right end of the half line and it is a major di�eren
e from the bulk situation. This

di�eren
e is essential be
ause it in�uen
es the analyti
ity domain of matrix elements.

For t → +∞ all the s
atterings and re�e
tions are terminated, the parti
les are again

far away from ea
h other and from the boundary forming the out state,

|θ′

1, θ
′

2, . . . , θ
′

m〉out ; θ
′

1 < θ
′

2 < · · · < θ
′

m < 0

whi
h is again equivalent to a free state. By the standard assumption of asymptoti



ompleteness, the two sets of states form a 
omplete basis separately and are 
onne
ted

by the re�e
tion matrix, whi
h is the boundary analogue of the S matrix. In an integrable

theory, due to the in�nite number of 
onserved 
harges, there is no parti
le 
reation (n =
m), the set of rapidities 
hanges only sign θ

′

i = −θi, and the re�e
tion matrix fa
torizes

into the produ
t of pairwise bulk s
atterings and individual re�e
tions

|θ1, θ2, . . . , θn〉in =
∏

i<j

S(θi − θj)S(θi + θj)
∏

i

R(θi)| − θ1,−θ2, . . . ,−θn〉out (1)

where S(θi− θj) 
onne
ts the two parti
le asymptoti
 in and out states in the bulk theory

(without the boundary)

1

In general, parti
les in an intera
ting two dimensional quantum �eld theory have an e�e
tive fermioni


statisti
s with the sole ex
eption of free bosoni
 theories, for whi
h it is ne
essary to allow equality in the

ordering of the parti
le rapidities.
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|θ1, θ2〉bulkin = S(θ1 − θ2)|θ2, θ1〉bulkout depi
ted as

θ

θ

1

2 θ1

θ 2

It is de�ned originally for θ1 > θ2 but 
an be analyti
ally 
ontinued for 
omplex rapidity

parameters su
h that the extended fun
tion (denoted the same way) is meromorphi
 and

satis�es unitarity and 
rossing symmetry

S(θ)S(−θ) = 1 , S(iπ − θ) = S(θ)

It might have poles on the imaginary axis at lo
ations θ = iuj with residue −iresθ=iuj
S(θ) =

Γ2
j , some of whi
h 
orrespond to bound states.

The amplitude R(θ) 
onne
ts the one parti
le asymptoti
 states in the boundary theory

|θ〉in = R(θ)| − θ〉out depi
ted as

θ

−θ

It 
an also be extended from the fundamental domain θ > 0 to a meromorphi
 fun
tion

on the whole 
omplex θ plane satisfying unitarity and boundary 
rossing unitarity

R(θ)R(−θ) = 1 , R(iπ − θ)S(2θ) = R(θ)

R(θ) may have poles at imaginary lo
ations θ = ivj (0 < vj < π/2), some 
orresponding

to ex
ited boundary states. If the interpolating �eld has a nontrivial va
uum expe
tation

value then generally there is also a pole at θ = iπ/2 with residue

−i Res
θ= iπ

2

R(θ) =
g2

2
(2)

The boundary form fa
tor is de�ned as the matrix element of some lo
al boundary

operator, O(t), between asymptoti
 states

out〈θ
′

1, θ
′

2, . . . , θ
′

m|O(t)|θ1, θ2, . . . , θn〉in =

FO
mn(θ

′

1, θ
′

2, . . . , θ
′

m; θ1, θ2, . . . , θn)e
−imt(

∑

cosh θi−
∑

cosh θ
′

j)

These form fa
tors are de�ned only for θ1 > θ2 > · · · > θn > 0 and θ
′

1 < θ
′

2 < · · · < θ
′

m < 0.
We 
an introdu
e other form fa
tors as

out〈θ
′

1, θ
′

2, . . . , θ
′

m|O(t)| − θ1,−θ2, . . . ,−θn〉out = FO
mn(θ

′

1, θ
′

2, . . . , θ
′

m;−θ1,−θ2, . . . ,−θn)

and 
onsider them as a 
ontinuation of the original ones in the rapidities. Expressing these

form fa
tors (via the boundary redu
tion formula [9℄) in terms of 
orrelation fun
tions

4



an analyti
 
ontinuation 
an be performed for any (even) 
omplex values of the rapidity

parameters. As a result the generalized form fa
tors are meromorphi
 fun
tions of the

rapidity parameters, and we shall assume that their poles always have physi
al origins

(maximal analyti
ity assumption). From the 
rossing formula

FO
mn(θ

′

1, θ
′

2, . . . , θ
′

m; θ1, θ2, . . . , θn) = FO
m−1n+1(θ

′

2, . . . , θ
′

m; θ
′

1 + iπ, θ1, θ2, . . . , θn) + dis
 (3)

derived in Appendix A, we 
an express all the form fa
tors in terms of the elementary form

fa
tors

out〈0|O(0)|θ1, θ2, . . . , θn〉in = FO
n (θ1, θ2, . . . , θn)

It is important to noti
e that the boundary form fa
tors FO
n (θ1, . . . , θn), in 
ontrast to the

bulk 
ase, do depend in general on all the rapidities θi, not just on their di�eren
es, sin
e

in the presen
e of a boundary Lorentz invarian
e is broken.

2.2 Axioms

In the Appendi
es we derive all the following properties of the matrix elements of lo
al

boundary operators valid in any integrable boundary quantum �eld theory. Following the

general philosophy in the bulk 
ase [3℄ we take them as axioms de�ning the lo
al operators

via their matrix elements.

I. Permutation:

FO
n (θ1, . . . , θi, θi+1, . . . , θn) = S(θi − θi+1)F

O
n (θ1, . . . , θi+1, θi, . . . , θn)

����
����
����

����
����
����

������

������

θn

θ

θ

i

θ1

Fn

i+1

���
���
���

���
���
���

θn

θ

θ

i

θ
1

Fn

i+1

II. Re�e
tion:

FO
n (θ1, . . . , θn−1, θn) = R(θn)F

O
n (θ1, . . . , θn−1,−θn)

����
����
����

����
����
����

������������

θn

θ

θ

i

θ1

Fn

i+1

���
���
���
���

θ

θ

i

nθ

θ
1

Fn

i+1
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III. Crossing re�e
tion:

FO
n (θ1, θ2, . . . , θn) = R(iπ − θ1)F

O
n (2iπ − θ1, θ2, . . . , θn)

����
����
����
����

������

θn

θ

θ

i

θ1

Fn

i+1

θn

θ

θ

i

nF

i+1

1θ

The singularity stru
ture of the form fa
tors is determined on physi
al grounds and 
an

be axiomatized as follows:

IV. Kinemati
al singularity

−iRes
θ=θ′

FO
n+2(θ + iπ, θ

′

, θ1, . . . , θn) =

(

1−
n
∏

i=1

S(θ − θi)S(θ + θi)

)

FO
n (θ1, . . . , θn)

or equivalently des
ribed as

−iRes
θ=θ′

FO
n+2(−θ + iπ, θ

′

, θ1, . . . , θn) =

(

R(θ)−
n
∏

i=1

S(θ − θi)R(θ)S(θ + θi)

)

FO
n (θ1, . . . , θn)

������������

θn

θ
1

θ

θ’

F
n+2−i Res ����

θn

θ
1

θ

θ’
n

F

θn

θ
1

’θ

θ
F

n

V. Boundary kinemati
al singularity

−iRes
θ=0

FO
n+1(θ +

iπ

2
, θ1, . . . , θn) =

g

2

(

1−
n
∏

i=1

S
(iπ

2
− θi

)

)

FO
n (θ1, . . . , θn)

��������

θn

θ
1

Fθ−i Res
1n+1 ����

θn

θ
1

θ

n
F

θn

θ
1

n
F

θ

6



VI. Bulk dynami
al singularity

−iRes
θ=θ′

FO
n+2(θ + iu, θ

′ − iu, θ1, . . . , θn) = ΓFO
n+1(θ, θ1, . . . , θn)

����

����

θn

θ+ιυ

θ−ιυ

θ
1

F
n+2

−i Res

θn

θ+ιυ

θ−ιυ
θ

1

F
n+1 Γ

θ

VII. Boundary dynami
al singularity

−iRes
θ=iv

FO
n+1(θ1, . . . , θn, θ) = g̃F̃O(θ1, . . . , θn)

.

����

θ
1

θ
n

ιυ

F
n+1−i Res θ

1

θ
n

ιυ

n
F
~

We note that equations similar to some of ours have been obtained earlier studying

boundary form fa
tors in spe
i�
 spin 
hains. Using a 
on
rete realization for the Hilbert

spa
e and the operators, these equations were extra
ted originally for the XXZ and XYZ

models in [10℄ and extended for other spin 
hains in [11℄. By extending the bulk free �eld

representation for the boundary sine-Gordon model the analogues of XXZ equations were

obtained in [12℄. In all these approa
hes, however, there is no analogue of the axiom V,

without whi
h the equations do not determine 
ompletely the form fa
tors as 
an be seen

on the example of the sinh-Gordon model. In 
ontrast, in our approa
h the form fa
tor

axioms are �rmly established from �rst prin
iples of lo
al quantum �eld theory, thus they

are valid in a general setting. As a further result of our systemati
 approa
h the axioms

found form a 
omplete system ready to be solved.

2.3 Consisten
y 
he
ks

Before pro
eeding to 
on
rete examples we perform a few 
onsisten
y 
he
ks of the axioms.

First we note that they are self-
onsistent in the sense that for spe
i�
 rapidities the n+2
parti
le form fa
tor 
an be 
onne
ted to the n parti
le form fa
tor either by the kinemati
al

singularity equations or by using twi
e the boundary kinemati
al equations, and the two

7



pro
edures give the same result. Indeed taking double residue in the �rst 
ase, �rst at

θ = θ
′

and then at θ = iπ
2
gives

i Res
θ= iπ

2

iRes
θ′=θ

FO
n+2(−θ + iπ, θ

′

, θ1, . . . , θn) =

(

−i Res
θ= iπ

2

R(θ)

)(

1−
n
∏

i=1

S(
iπ

2
− θi)S(

iπ

2
+ θi)

)

FO
n (θ1, . . . , θn)

Taking now the residue at θ = iπ
2
�rst then at θ

′

= iπ
2
and using that S(0) = −1 gives

i Res
θ= iπ

2

i Res
θ
′
= iπ

2

FO
n+2(−θ + iπ, θ

′

, θ1, . . . , θn) =

g2

4

(

1 +
n
∏

i=1

S(
iπ

2
− θi)

)(

1−
n
∏

i=1

S(
iπ

2
− θi)

)

FO
n (θ1, . . . , θn)

The two di�erent orders of taking the residues di�er by a fa
tor of 2 sin
e in the �rst 
ase

after taking the residue at θ
′

= θ we get a fa
tor f(2θ − iπ) whi
h has a zero at θ = iπ
2

(due to S(0) = −1 the bulk minimal form fa
tor vanishes at the threshold: f(0) = 0). In
the se
ond 
ase after taking the �rst residue a fa
tor f(θ − iπ

2
) appears. When expanding

around θ = iπ
2
to take the se
ond residue there appears a fa
tor 2 due to the di�eren
e

in the arguments of this parti
ular fa
tor (all other terms are identi
al in the two 
ases).

Combining the 
rossing symmetry of the S-matrix with the de�nition of g (2) the two

expressions are easily seen to be equivalent.

It is worth emphasizing that in the boundary kinemati
al singularity axiom it is the

parti
le-boundary 
oupling 
onstant g whi
h appears although the residue of the re�e
tion

fa
tor determines only g2. There are known examples where in two physi
ally di�erent

situations the fundamental re�e
tion amplitudes are the same and the two 
ases are dis-

tinguished only by the sign of g (e.g. the boundary Lee-Yang model with 1 boundary and

with Φ boundary with a parti
ular value of the boundary 
oupling [13℄ � see in more details

in Se
. 3.3). Be
ause of axiom V the solutions of the form fa
tor axioms are di�erent for

the two 
ases, as shown in detail in Se
. 3.3.

As a se
ond test we relate the two dis
onne
ted physi
al domains (in/out) of the def-

inition of the form fa
tor. By permuting su

essively ea
h rapidity to the last position,

applying a re�e
tion and permuting ba
k to their original position we obtain that

FO
n (θ1, . . . , θn) =

∏

i<j

S(θi + θj)
∏

i

R(θi)
∏

i<j

S(θi − θj)F
O
n (−θ1, . . . ,−θn)

The produ
t appearing is nothing but the multi-parti
le R-matrix, (1), whi
h 
onne
ts the

in and out states.

Finally we use the fa
t that the re�e
tion matrix 
an be 
onsidered as a spe
ial form

fa
tor (of the identity operator Id) whose analyti
 properties are well known. By de�nition

F Id
2 (θ

′

+ iπ, θ) = out〈θ
′|Id|θ〉in = R(θ) out〈θ

′|Id| − θ〉out = R(θ)δ(θ + θ
′

)

8



Now using the permutation property and tri
ks as above we have

F Id
2 (θ

′

+ iπ, θ) = S(iπ + θ
′ − θ)F Id

2 (θ, θ
′

+ iπ) = S(iπ + θ
′ − θ)R(iπ + θ

′

)δ(θ + θ
′

)

whi
h, due to the boundary 
rossing unitarity, is equivalent to the previous expression.

2.4 General solution

In this se
tion we des
ribe the general pro
edure we use to obtain the solutions of the form

fa
tor equations in the various spe
i�
 models. In doing so we emphasize the similarities

and the di�eren
es between the boundary and bulk form fa
tors and also separate the

(boundary) operator dependent parts from the ones that depend on the spe
i�
 �eld theory


onsidered but are independent of the operators in question.

2.4.1 One parti
le form fa
tors

In sharp 
ontrast to the bulk 
ase, in the boundary theory, the boundary operators in

general may have non trivial one parti
le form fa
tors (1PFF). Sin
e the multi-parti
le

form fa
tors are re
ursively determined, the 1PFF-s are very important inputs to these

re
ursions, and their determination is ne
essarily the �rst step. The equations for the

1PFF read:

F1(θ) = R(θ)F1(−θ) ; F1(iπ + θ) = R(−θ)F1(iπ − θ), (4)

where the re�e
tion amplitude R(θ) is analyti
 in the physi
al strip 0 ≤ ℑm(θ) ≤ π/2
(apart from the presen
e of �nitely many dis
rete poles on the imaginary axis), and from

general 
onsiderations using the redu
tion formulae we know that F1(θ) is analyti
 for

0 ≤ ℑm(θ) ≤ π. Note that if F1(θ) is a solution of (4) then F1(θ)Ψ(θ) is also a solution

provided

Ψ(θ) = Ψ(−θ), Ψ(iπ + θ) = Ψ(iπ − θ),

i.e. if Ψ is even and 2πi periodi
. Therefore one 
an take Ψ(θ) = ψ(y) with y = eθ + e−θ
.

To 
onstru
t solutions to (4) we redu
e them to a problem already solved in the bulk

form fa
tor bootstrap. To this end we write F1(θ) = g1(θ)g2(iπ − θ) and suppose that

g1(θ) = R(θ)g1(−θ) ; g1(iπ + θ) = g1(iπ − θ), (5)

whi
h are nothing else but the bulk two parti
le form fa
tor equations [14℄, where the

re�e
tion amplitude, R(θ), plays the role of the S-matrix. Furthermore, plugging this

produ
t form F1 into (4) reveals, that g2 must also solve (5). Thus a solution to (4) 
an

be 
onstru
ted as

F1(θ) = g(θ)g(iπ − θ),

where g(θ) is an appropriate solution of (5).

To obtain a solution of (5) we use the following theorem [15℄. If the fun
tion h(θ)
is meromorphi
 in the physi
al strip 0 ≤ ℑm(θ) < π with possible poles at iα1, . . . , iαl

9



and zeros at iβ1, . . . , iβk and grows as at most a polynomial in exp(|θ|) for |ℜe θ| → ∞,

furthermore it satis�es

h(θ) =M(θ)h(−θ); M(θ) = exp

{
∫ ∞

0

dtf(t) sinh

(

tθ

iπ

)}

; h(iπ − θ) = h(iπ + θ);

then it is uniquely de�ned up to normalization as

h(θ) =

∏k
j=1 sinh

(

1
2
(θ − iβj)

)

sinh
(

1
2
(θ + iβj)

)

∏l
j=1 sinh

(

1
2
(θ − iαj)

)

sinh
(

1
2
(θ + iαj)

) exp

{

∫ ∞

0

dtf(t)
sin2

(

iπ−θ
2π

t
)

sinh x

}

.

Sin
e the re�e
tion amplitudes are usually expressed as produ
ts of the blo
ks (xi)

R(θ) =
∏

i

(xi); (xi) =
sinh( θ

2
+ iπxi

2
)

sinh( θ
2
− iπxi

2
)
, (6)

to use this theorem we need the integral representation of one single blo
k (x),:

−(x) = exp

{

2

∫ ∞

0

dt

t

sinh t(1− x)

sinh t
sinh

(

tθ

iπ

)}

.

Then, if R(θ) 
onsists of an even number of blo
ks, the minimal solution (with no zeroes

and poles) to eq.(4) 
an be written as

re
min

(θ) = exp

{

2

∫ ∞

0

dt

t

∑

i sinh t(1− xi)

sinh2 t

(

1− cosh
t

2
cos

t

π

(

iπ

2
− θ

))}

.

If R(θ) 
ontains an extra minus sign, or is the produ
t of an odd number of blo
ks,

R = −∏(−(xi)), then the fa
tor g(θ) ne
essarily 
ontains a zero at the origin whi
h

is implemented by putting an extra sinh θ
2
into it; thus in this 
ase ro

min

(θ) = sinh θ re
min

(θ).
In the following an important role is played by the appropriate modi�
ation of the minimal

1PFF denoted by r(θ)

r(θ) = r
min

(θ)× zeroes

poles

where the last fa
tor denotes an appropriate number of zeroes and poles at the right pla
es

(usually the same as in R(θ)).
Thus the general solution of eq.(4) 
an be written as

F1(θ) = r(θ)Q1(y), y = eθ + e−θ,

where the 
hoi
e of Q1(y) is restri
ted by the analyti
ity and the possible asymptoti
s of

F1. It is the Q1(y) in the 1PFF that 
arries the dependen
e on the boundary operator O.

Note in parti
ular that if Q1(y) 
orresponds to the operator O then Q̃1(y) ∼ yNQ1(y) with
N integer N ≥ 1, des
ribes the 1PFF of the operator ∂Nτ O.
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2.4.2 Two-parti
le form fa
tors

The next step is to investigate the two-parti
le form fa
tors (2PFF). The novel feature


ompared to the 1PFF is that their equations 
ontain also the bulk S-matrix. It is worth-

while to go through the analysis in some detail sin
e it is straightforward to write down

the general form of the n-parti
le form fa
tors on
e that of the 2PFF-s is obtained. The

equations for the 2PFF-s have the form

F2(θ1, θ2) = S(θ1 − θ2)F2(θ2, θ1), (a) F2(θ1, θ2) = R(θ2)F2(θ1,−θ2) (b)

F2(iπ + θ1, θ2) = R(−θ1)F2(iπ − θ1, θ2). (c) (7)

Note that if F2(θ1, θ2) is a solution to these equations then so is F2(θ1, θ2)H(θ1, θ2) provided
H is a symmetri
, even and 2iπ periodi
 fun
tion.

To 
onstru
t solutions to eq.(7) we write

F2(θ1, θ2) = f(θ1 − θ2)Ψ(θ1, θ2)

where f(θ) is the minimal bulk two parti
le form fa
tor [14℄, i.e. the minimal solution of

f(θ) = S(θ)f(−θ), f(iπ + θ) = f(iπ − θ).

Plugging this F2 into (7a) reveals that Ψ must be symmetri
 Ψ(θ1, θ2) = Ψ(θ2, θ1). The

most 
onvenient way to satisfy (7b) is that Ψ has the form

Ψ(θ1, θ2) = f(θ1 + θ2)r(θ1)r(θ2)Φ(θ1, θ2)

where Φ is symmetri
 and even Φ(θ1, θ2) = Φ(θ1,−θ2). Finally this F2 satis�es eq.(7
) also

if Φ(iπ − θ1, θ2) = Φ(iπ + θ1, θ2). The 
onditions on Φ 
an be satis�ed simply by writing

Φ(θ1, θ2) = φ(y1, y2) where φ is a symmetri
 fun
tion of the yi-s (yi = eθi + e−θi
, i = 1, 2).

Thus the general form of the 2PFF, 
ompatible with eq.(7) is

F2(θ1, θ2) = r(θ1)r(θ2)f(θ1 − θ2)f(θ1 + θ2)φ(y1, y2), φ(y1, y2) = φ(y2, y1).

Di�erent 
hoi
es of the boundary operator O 
orrespond to di�erent fun
tions φ(y1, y2) in
this expression.

2.4.3 Multi-parti
le form fa
tors

From the expli
it form of the 2PFF it is 
lear that the general form of the multi-parti
le

form fa
tors 
an be written in the following form:

Fn(θ1, θ2, . . . , θn) = Gn(θ1, θ2, . . . , θn)
n
∏

i=1

r(θi)
∏

i<j

f(θi − θj)f(θi + θj), (8)

where f(θ) is the minimal bulk two parti
le form fa
tor. As a 
onsequen
e of the form

fa
tor equations Gn is a 2πi periodi
, symmetri
 and even fun
tion of the rapidities: θi,

11



i.e. it is symmetri
 in the variable yi = 2 cosh θi. When the bulk S-matrix is nontrivial,

the bulk kinemati
al singularity equations

−iRes
θ′=θ

Fn+2(θ
′

+ iπ, θ, θ1, . . . , θn) = (1−
n
∏

i=1

S(θ − θi)S(θ + θj))Fn(θ1, . . . , θn) (9)

give re
ursive relations linking Gn to Gn+2. (Note that these singularities are absent in the

two parti
le 
ase). The advantage of using the yi-s be
omes 
lear if one tries to des
ribe

the bulk kinemati
al singularities: sin
e y(iπ + θ) = −y(θ), thus in
luding a (symmetri
)

fa
tor yi + yj in the denominator automati
ally a

ounts for the pole. Therefore in the

following we put

Gn(θ1, θ2, . . . , θn) =
Qn(y1, y2 . . . , yn)
∏

i<j

(yi + yj)
,

(with Qn being a symmetri
 fun
tion of y1, . . . , yn) and then eq.(9) give re
ursive relations

between the fun
tions Qn. Clearly the a
tual form of these re
ursive relations varies from

model to model sin
e they depend on the bulk S-matrix. The form of the re
ursions

depends also on the 
hoi
e of the 1PFF r(θ); it is useful to 
hoose an r(θ) whi
h gives the

simplest possible re
ursion. Writing the 2PFF in the same form as the n-parti
le one

φ(y1, y2) =
Q2(y1, y2)

y1 + y2

then the absen
e of kinemati
al singularities requires Q2(y,−y) = 0.
If the bulk S-matrix is nontrivial and the re�e
tion fa
tor has a pole at

iπ
2
then the

form fa
tors with odd and even parti
le number are 
onne
ted by the boundary kinemati
al

singularity equation:

−iRes
θ=0

FO
n+1(θ +

iπ

2
, θ1, . . . , θn) =

g

2

(

1−
n
∏

i=1

S
(iπ

2
− θi

)

)

FO
n (θ1, . . . , θn)

The 
orresponding pole in the n parti
le form fa
tor 
an be in
luded as

Gn(θ1, θ2, . . . , θn) =
Qn(y1, y2 . . . , yn)
∏

i yi
∏

i<j

(yi + yj)
,

and the boundary kinemati
al singularity equation relates Qn to Qn+1.

The even and the odd parti
le form fa
tors are also related if the bulk S-matrix has a

�self fusing� pole des
ribing the 2 parti
le → 1 parti
le pro
ess, whi
h parallels the bulk

situation (this happens e.g. in the Lee-Yang model). (In this 
ase it is 
ustomary to in
lude

this pole also in f(θ)). Sin
e the fusing angle in this pro
ess is ne
essarily 2π/3, one �nds
from bootstrap that in this 
ase the dynami
al singularities imply

−iRes
θ
′
=θ
Fn+2(θ

′

+
iπ

3
, θ − iπ

3
, θ1, . . . , θn) = ΓFn+1(θ, θ1, . . . , θn), (10)
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where Γ is related to the residue of the S-matrix at the self fusing pole: −iresθ= 2πi
3

S(θ) = Γ2
.

An important restri
tion follows on the form fa
tor fun
tions from requiring a power

law bounded ultraviolet behaviour for the two point 
orrelator of the boundary operators

〈0|O(τ)O(0)|0〉: the growth of the fun
tion Fn(θ1, . . . , θn) must be bounded by some ex-

ponential of the rapidity as θ → ∞ (i.e. the form fa
tors only grow polynomially with

parti
le energy). This 
an be shown using an argument identi
al to that in the bulk 
ase

[16℄. If r (θ) and f (θ) are spe
i�ed in a way to in
lude all poles indu
ed by the dynami
s

of the model, then it follows that the fun
tions Qn must be polynomials of the yi. There-
fore in the following we only look for expli
it polynomial solutions of the various re
ursion

equations. This is a posteriori 
on�rmed sin
e we �nd as many polynomial solution of the

boundary form fa
tor equation as many independent lo
al operator exist in the theories.

2.5 Two-point fun
tion

On
e an appropriate solution of the form fa
tor axioms is found it 
an be used to des
ribe


orrelators of boundary operators. The two-point fun
tion of the boundary operator O

an be 
omputed by inserting a 
omplete set of states

〈0|O(t)O(0)|0〉 =
∞
∑

n=0

1

(2π)n

∫

θ1>θ2>···>θn>0

dθ1dθ2 . . . dθne
−imt

∑

i cosh θiFnF
+
n (11)

where time translation invarian
e was used and the form fa
tors are

Fn = 〈0|O(0)|θ1, θ2, . . . , θn〉in = FO
n (θ1, θ2, . . . , θn)

and

F+
n = in〈θ1, θ2, . . . , θn|O(0)|0〉 = FO

n (iπ + θn, iπ + θn−1, . . . , iπ + θ1)

whi
h, for unitary theories, is the 
omplex 
onjugate of the previous one: F+
n = F ∗

n . In the

Eu
lidean (τ = it) version of the theories the form fa
tor expansion of the 
orrelator for

large separations 
onverges rapidly sin
e multi-parti
le terms are exponentially suppressed.

The identi�
ation between solutions of the form fa
tor equations and operators of the

theory is a 
entral issue. One possible way is to analyze the behaviour of the boundary


orrelators for short distan
es. Although on general grounds one may expe
t the form fa
tor

expansion to 
onverge rapidly only in the infrared (large volume) regime, the examples from

the various bulk theories, where the form fa
tor expansion 
onverges even in the UV domain

(see e.g. [17℄), suggest that similar behaviour may happen in the boundary setting as well.

If the theory 
an be des
ribed as a relevant perturbation of a 
onformal �eld theory, then

in the UV domain the two-point fun
tion must follow a behaviour di
tated by this limiting

theory. The short distan
e singularity exponent is related to the s
aling dimension of the

operator O and 
an be 
al
ulated from the asymptoti
 growth of the form fa
tors.
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3 Model studies

In this se
tion we 
arry out a detailed investigation of the solutions of the form fa
tor

equations in four di�erent models. The �rst two models (the massive s
alar �eld with

linear boundary intera
tion and the Ising model intera
ting with a boundary magneti


�eld [5℄) are free in the bulk and the 
orrelation fun
tions are known expli
itly, thus the

form fa
tors obtained from the expli
it �eld theoreti
 solutions 
an be 
ompared dire
tly

to the solutions of the form fa
tor equations. In both 
ases we �nd that the spa
e of

appropriate polynomial solutions of the FF equations 
an be identi�ed with the spa
e of

lo
al boundary operators obtained from the expli
it 
onstru
tion. In the 
ase of the Ising

model we also show how the 
onformal dimensions of the various operators of the ultraviolet

limiting BCFT 
an be obtained from the solutions of the FF equations. The third and

fourth models, namely the s
aling Lee-Yang and the sinh-Gordon models with integrability

preserving boundaries are among the simplest boundary integrable theories. In 
ontrast

to the previous 
ases they 
annot be solved dire
tly so one has to rely upon the solution

of the form fa
tor equations. Sin
e these models 
ontain nontrivial bulk intera
tions the

re
ursion relations 
onne
ting the multi-parti
le form fa
tors are no longer trivial, and in

these 
ases we investigate their solutions in detail.

3.1 Massive s
alar with linear boundary intera
tion

3.1.1 Dire
t 
al
ulation

The free massive s
alar �eld Φ(x, t) restri
ted to the negative half-line x ≤ 0 subje
t to

linear boundary 
ondition

∂xΦ(x, t)|x=0 = −λ(Φ(0, t)− Φ0). (12)


an be des
ribed by the following Lagrangian:

L = Θ(−x)
(

1

2
(∂tΦ)

2 − 1

2
(∂xΦ)

2 − m2

2
Φ2

)

− δ(x)
λ

2
(Φ− Φ0)

2,

This one parameter family of linear boundary 
ondition interpolates between Neumann

∂xΦ|x=0 = 0 (for λ = 0) and Diri
hlet Φ|x=0 = Φ0 (for λ → ∞) boundary 
onditions.

Sin
e for any λ we are dealing with a free theory it 
an be solved expli
itly. The mode

de
omposition of the �eld is

Φ(x, t) = Aemx+

∫ ∞

0

dk

ω(k)

{

a(k)e−iω(k)t
(

eikx+R(k)e−ikx
)

+a+(k)eiω(k)t
(

e−ikx+R(−k)eikx
)

}

where A = λ
m+λ

Φ0 and

R(k) =
k − iλ

k + iλ

14



is the re�e
tion fa
tor on the boundary at x = 0. The 
reation/annihilation operators are

normalized as

[a(k), a+(k
′

)] = 2πω(k)δ(k − k
′

) , k , k
′

> 0

The boundary two-point fun
tion 
an be 
al
ulated easily

〈0|Φ(0, t)Φ(0, t′)|0〉 = A2 +

∫ ∞

0

dk

2πω(k)
e−iω(k)(t−t

′

) (1 +R(k)) (1 +R(−k))

By 
omparing this expression to the form fa
tor expansion of the two-point fun
tion (11),

the form fa
tor of the elementary �eld 
an be extra
ted:

〈0|Φ(0, t)|θ〉 = e−iω(k)t (1 +R(k))

The same result 
an be obtained by taking the general (spa
e-dependent) two point fun
tion

〈0|T
(

Φ(x, t)Φ(x
′

, t
′

)
)

|0〉 = A2em(x+x
′

)

+

∫

d2k

(2π)2
i

k2 −m2 + iǫ
e−ik0(t−t

′

)
(

e−ik1(x−x
′

) +R(k)e+ik1(x+x
′

)
)

and using the boundary redu
tion formula [9℄

〈0|Φ(x, t)|θ〉 = 2i

∫ 0

−∞

dx
′

∫ ∞

−∞

dt
′

eiω(θ)t
′

cos(p(θ)x
′

)
{

∂2
t
′ − ∂2

x
′ +m2 + δ(x

′

)∂x′

}

〈0|T
(

Φ(x, t)Φ(x
′

, t
′

)
)

|0〉

where ω(θ) = m cosh(θ) and p(θ) = m sinh(θ). Performing expli
itly the 
al
ulation yields

〈0|Φ(x, t)|θ〉 = e−iω(θ)t(eip(θ)x +R(θ)e−ip(θ)x) (13)

whi
h for the form fa
tor of the operator Φ(x = 0, t) reads as

〈0|Φ(0, t)|θ〉 = e−iω(θ)t (1 +R(θ))

Introdu
ing τ = −it one also gets

〈0|∂nτΦ(0, 0)|θ〉 = ω(θ)n (1 +R(θ)) , n > 0.

Clearly these operators have no multi-parti
le matrix elements. It is important to realize

that ∂xΦ(0, 0) is not an independent operator sin
e the boundary 
ondition eq.(12) relates

it to Φ(0, 0), thus the set of independent boundary operators having only one parti
le

matrix elements is given by ∂nτ Φ(0, 0). To obtain multi-parti
le matrix elements one has

to 
onsider

〈0| : Φ(x1, t1) . . .Φ(xk, tk) : |θ1 . . . θk〉.
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Using the analogous boundary redu
tion formula and the Wi
k theorem we obtain

〈0| : Φ(x1, t1) . . .Φ(xk, tk) : |θ1 . . . θk〉 = (14)

{

e−iω(θ1)t1
(

eip(θ1)x1 +R(θ1)e
−ip(θ1)x1

)}

. . .
{

e−iω(θk)tk
(

eip(θk)xk +R(θk)e
−ip(θk)xk

)}

+ . . . ,

where the ellipses at the end represent additional terms whi
h make it 
ompletely sym-

metri
 in all 
oordinates. From this expression one 
an extra
t the form fa
tor of the most

general boundary operator of the theory

〈0| : ∂n1

τ1
Φ(0, 0) . . . ∂nk

τk
Φ(0, 0) : |θ1 . . . θk〉 = ω(θ1)

n1 (1 +R(θ1)) . . . ω(θk)
nk (1 +R(θk)) + . . .

where again a 
omplete symmetrization in the θi rapidities is understood. Che
king the

leading asymptoti
 behaviour of these form fa
tors gives that for all θi ∼ θ large they

grow as eNθ
, where N = n1 + · · ·+ nk is the total number of derivatives in the expression.

We note that we have as many operators for a given N as many partition N has into the

numbers 1, 2, . . . , k. This 
an be seen by writing N = N1+2N2+ · · ·+kNk and asso
iating

to it the operator with n1 = N1+N2 · · ·+Nk, n2 = N2+ · · ·+Nk . . . nk = Nk derivatives.

The Diri
hlet boundary 
ondition (R = −1) 
an be obtained in the λ → ∞ limit.

Clearly Φ|x=0 = Φ0 is a 
-number and the Diri
hlet boundary 
ondition does not 
onne
t

the operator ∂xΦ|x=0 to Φ|x=0. We 
an extra
t, however, the form fa
tors of the operator

∂xΦ(0, t) from that of Φ(0, t) by taking the λ→ ∞ limit 
arefully in (13):

〈0|∂xΦ(0, t)|θ〉 = e−iω(θ)t2ip(θ)

and for its derivatives

〈0|∂nτ ∂xΦ(0, 0)|θ〉 = ω(θ)n2ip(θ), n > 0.

This 
an be extended similarly to the most general operator as

〈0| : ∂n1

τ ∂xΦ(0, 0) . . . ∂
nk
τ ∂xΦ(0, 0) : |θ1 . . . θk〉 = ω(θ1)

n12ip(θ1) . . . ω(θk)
nk2ip(θk) + . . .

where again a 
omplete symmetrization in the θi rapidities is understood. Che
king the

leading asymptoti
 behaviour of these form fa
tors gives that for all θi ∼ θ large they grow

as eNθ
, where N = k + n1 + · · ·+ nk is the total number of derivatives in the expression.

3.1.2 Solving the form fa
tor equations

The bulk S-matrix of the theory together with the re�e
tion fa
tor are

S(θ) = 1, R(θ) =
sinh θ − i λ

m

sinh θ + i λ
m

= −
(

1 +
B

2

)(

−B
2

)

,
λ

m
= sin

πB

2
,

where the blo
k notation (6) is used to express R(θ). As a 
onsequen
e of S = 1 the

minimal bulk form fa
tor is trivial: f(θ) = 1. To determine the 1PFF we note that this

re�e
tion fa
tor is identi
al to the two parti
le S-matrix of the sinh-Gordon model if the
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above identi�
ation of parameters is done. Therefore eq.(5) in this 
ase is identi
al to the

equation for the minimal bulk form fa
tor of the sinh-Gordon model. Choosing for g(θ)
the solution given in [14℄ (des
ribed in detail in the sinh-Gordon se
tion) gives

r(θ) = 2g(θ)g(iπ − θ) =
2 sinh θ

sinh θ + i λ
m

= 1 + R(θ)

Clearly this 
orresponds to the form fa
tor of the operator Φ(0, 0)−A.
Now we demonstrate that the number of independent solutions of the form fa
tor

equations 
oin
ides with the number of lo
al boundary operators. In this 
ase the general

Ansatz (8) takes the following form

Fn(θ1, . . . , θn) = Pn(y1, . . . , yn)
∏

i

r(θi)

where yi = 2 cosh θi as before. Sin
e the bulk S-matrix is trivial there are no bulk/boundary

kinemati
al singularities and Pn is a 
ompletely symmetri
 polynomial in the yi-s. One 
an

ount the independent solutions of the BFF equations by 
ounting the possible solutions

for Pn. If Pn has degree N then the solutions are given by the partitions of N into the

numbers 1, 2, . . . n in the following way. Sin
e the 
ompletely symmetri
 polynomials of n
variable are generated by the σi-s (elementary symmetri
 polynomials of degree i) one 
an
write:

n
∏

i=1

(x+ xi) =

n
∑

i=1

σi x
n−i; Pn ∝ σk1

1 σ
k2
2 . . . σkn

n ; N =
∑

iki

It is 
lear that this spa
e has the same dimension as the spa
e of boundary operators

having only n parti
le matrix elements with asymptoti
 growth eNθ
.

The Diri
hlet (λ → ∞) limit for the operator ∂xΦ(0, 0) 
an be obtained using its

relation to Φ(0, 0) via the boundary 
ondition (12) as we did in the Lagrangian framework.

3.2 Ising model with boundary magneti
 �eld

3.2.1 Dire
t 
al
ulation

The Ising model with a boundary magneti
 �eld 
an be des
ribed by a free massive Majo-

rana fermion perturbed at the boundary [5℄. In Minkowskian formalism the Dira
 equation


an be obtained form the Lagrangian:

L =
1

2
Ψ̄(iγµ∂µ −m)Ψ

The gamma matri
es are 
hosen as

γ0 =

(

0 −i
i 0

)

; γ1 =

(

0 −i
−i 0

)
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in order for the Dira
 equation to be real:

(

−m ∂x + ∂t
∂x − ∂t −m

)

Ψ = 0

Thus the Majorana 
ondition 
orresponds to taking Ψ real. Using the 
omponent notation

Ψ =

(

ψ+

ψ−

)

the Lagrangian of the boundary �eld theory takes the form

L = −iΘ(−x)
(

1

2
ψ+(∂t − ∂x)ψ+ − 1

2
ψ−(∂t + ∂x)ψ− −mψ+ψ−

)

− iδ(x)UB

where

UB =
1

2
ψ+ψ− +

1

2
aȧ +

1

2
ha(ψ+ + ψ−)

The operator a is a boundary fermion a2 = 1, whi
h implements the boundary 
ondition

∂t(ψ+ − ψ−) =
h2

2
(ψ+ + ψ−)

Sin
e the theory is free we 
an solve it expli
itly. The mode expansion of the fermioni


�elds are

ψ±(x, t) =

∫ ∞

0

dθ

2π

{

b(θ)e−iω(θ)t

(

u±(θ)e
ik(θ)x +R(θ)u±(−θ)e−ik(θ)x

)

+b+(θ)eiω(θ)t
(

v±(θ)e
−ik(θ)x +R(−θ)v±(−θ)eik(θ)x

)

}

where u±(θ) = v∗±(θ) =
√
me∓

iπ+2θ
4

are the spinor amplitudes, R(θ) is nothing else but the
one-parti
le re�e
tion fa
tor

R(θ) = i tanh

(

iπ

4
− θ

2

)

sinh θ + iκ

sinh θ − iκ
, κ = 1− h2

2m

and the 
reation/annihilation operators are normalized as

{b(θ), b+(θ′

)} = 2πδ(θ − θ
′

)

The boundary two point fun
tion 
an be 
al
ulated expli
itly:

〈0|ψ±(0, t)ψ+(0, t
′

)|0〉 =
∫ ∞

0

dθ

2π
e−iω(θ)(t−t

′

) (u±(θ) +R(θ)u±(−θ)) (v+(θ) +R(−θ)v+(−θ))
(15)
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whi
h, as 
ompared to the form fa
tor expansion (11), gives

〈0|ψ±(0, t)|θ〉 = e−iω(θ)t (u±(θ) +R(θ)u±(−θ)) (16)

These two operators are not independent sin
e they are related by the boundary 
ondition

and so there is only one boundary fermion �eld, say ψ+. As a result, the algebrai
ally

independent operators at the boundary are the fermion �eld and its derivatives ∂nτ ψ+.

Note that ∂xψ+|x=0 is not an independent �eld, as it is determined by the Dira
 equation

in terms of ∂τψ+|x=0 and ψ−|x=0. As a 
onsequen
e of the fermioni
 nature of the �eld

the most general boundary operator has the form ∂n1

τ ψ+∂
n2

τ ψ+ . . . ∂
nk
τ ψ+ where n1 > n2 >

· · · > nk (the inequalities are stri
t, in 
ontrast to the bosoni
 
ase dis
ussed earlier).

N = n1 + n2 + · · · + nk is 
alled the level of the operator, and operators at level N 
an

be brought in one-to-one 
orresponden
e with partitions of N into the numbers 1, 2, . . . , k.
For a partition

N = kNk + (k − 1)Nk−1 + · · ·+ 2N2 +N1

we asso
iate the operator above with nk = Nk; nk−1 = Nk +Nk−1; . . . ; n1 = Nk +Nk−1 +
· · ·+N1.

(Had we in
luded also the operator a we would have had to perform a GSO type pro-

je
tion, leaving only non-fermioni
 operators. This would amount to keeping all operators

with an even number of fermion fa
tors plus all odd ones multiplied with a fa
tor a, but
this would lead to the same number of operators.)

3.2.2 Solution of the FF bootstrap

Using again the blo
k notation (6) the S-matrix of the theory and the re�e
tion fa
tor are

[5℄

S(θ) = −1 , Rx(θ) = [x]

(

−1

2

)

, [x] = (x)(1− x)

where x is related to the boundary magneti
 �eld as

sin πx = 1− h2

2m
= κ

For h = 0 we re
over the free boundary 
ondition with

R
free

(θ) =

(

1

2

)

whi
h has a pole at iπ
2

orresponding to the fa
t that the ground state is doubly degenerate.

In 
ontrast to the generi
 situation the pole at iπ
2
is a dynami
al pole and not a kinemati
al

one (sin
e the �eld has no va
uum expe
tation value at all). The h→ ∞ limit 
orresponds

to the �xed boundary 
ondition (when the Ising spin takes a �xed value at the boundary),

and the re�e
tion fa
tor is

R
�xed

(θ) =

(

−1

2

)
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whi
h has no pole in the physi
al strip at all. The minimal one parti
le form fa
tor for the

�xed 
ase 
an be 
al
ulated dire
tly using the re
ipe in Se
tion 2

r
�xed

(θ) =
sinh θ

sinh( θ
2
+ iπ

4
)

For the free 
ase we in
lude the dynami
al singularity into the 1PFF

r
free

(θ) = −2i
sinh θ

cosh θ
sinh

(

θ

2
+ i

π

4

)

The simplest solution whi
h interpolates between these two 
ases and has a pole exa
tly

at the lo
ation of the boundary dynami
al singularity of the re�e
tion fa
tor is

r(θ) =
sinh θ

sinh( θ
2
+ iπ

4
)

cosh θ + i(1 − κ)

sinh θ − iκ
. (17)

This expression is the same we obtained from the exa
t solution of the model (16). The

minimal bulk two parti
le form fa
tor is simply

f(θ) = sinh
θ

2
.

Sin
e R(θ) has no kinemati
al pole at iπ
2
, boundary kinemati
al singularities are absent,

and sin
e the bulk S-matrix is −1 there are no bulk kinemati
al singularities either. Thus

we look for the n parti
le form fa
tors in the form (8)

Fn(θ1, . . . , θn) = Pn(y1, . . . , yn)
∏

i

r(θi)
∏

i<j

f(θi − θj)f(θi + θj),

where yi = 2 cosh θi and Pn is a 
ompletely symmetri
 polynomial in the yi-s. Taking into

a

ount the spe
ial form of f(θ) the form fa
tor simpli�es to

Fn(θ1, . . . , θn) = Pn(y1, . . . , yn)
∏

i

r(θi)
∏

i<j

(yi − yj) (18)

The independent solutions are 
ounted in the same way as in the bosoni
 
ase, i.e. by the

partitions of N into the numbers 1, 2, . . . , n and are generated by the σi-s. It is 
lear that
the dimension of the spa
e they span is the same as the one of the boundary operators

obtained from the dire
t 
al
ulation.

Sin
e the UV limit of this theory is a boundary 
onformal �eld theory one 
an go

further than in the bosoni
 
ase and 
al
ulate the UV dimension of the various boundary

operators. As the form fa
tor equations are not 
oupled we 
an 
hoose a basis among

operators 
onsisting of those having matrix elements only with a 
ertain �xed number of

parti
les.
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If the operator has only one-parti
le matrix element then its 
orrelator is

〈0|O(τ)O(0)|0〉 =
∫ ∞

0

dθ

2π
|FO

1 (θ)|2e−m cosh θτ
(19)

where FO
1 (θ) = r(θ)P1(y). Plugging (17) into (19) we obtain the exa
t 
orrelator (15). If

the operator O goes to a s
aling operator in the UV limit (τ → 0) then the exa
t 
orrelator

has the short distan
e asymptoti
s τ−2∆
, where ∆ is the appropriate s
aling dimension in

the ultraviolet BCFT. In (19) the singularity 
omes from the large θ asymptoti
s of the

form fa
tor. If |FO
1 (θ)|2 diverges as yn here, then the 
orresponding weight is ∆ = n

2
.

Taking the simplest solution P1(y) = 1 the weight is ∆ = 1
2
whi
h 
orresponds to the

boundary fermion �eld. Choosing P1(y) = σn
1 (y) 
orresponds to the n-th derivative of this

operator whi
h has weight n+ 1
2
.

Similarly we 
an analyze an operator having n-parti
le matrix element only. The 
or-

responding 
orrelator is

〈0|O(n)(τ)O(n)(0)|0〉 =
∫ ∞

0

dθ1
2π

. . .

∫ ∞

0

dθn
2π

1

n!
|FO

n (θ1, . . . , θn)|2e−m(cosh θ1+···+cosh θn)τ

The operator whi
h has the mildest UV behaviour 
orresponds to Pn = 1. The 
orrespond-
ing form fa
tor square for large θ-s behaves as

|FO
n (θ1, . . . , θn)|2 ∝ exp(θ(n + n(n− 1)) = eθn

2

,

thus the UV dimension of O(n) is ∆ = n2

2
. The expli
it boundary operator whi
h has

nonzero matrix elements only with n parti
le states and has the mildest UV behaviour is

ψ+∂τψ+ . . . ∂
n−1
τ ψ+

with dimension ∆ = n
2
+ n(n−1)

2
; therefore it 
an be asso
iated to O(n).

To mat
h the des
endent operators, note that to any partition ofN = k1+2k2+· · ·+n·kn
there exists a solution of the form fa
tor equations with PN

n = σk1
1 . . . σkn

n . The number

of su
h polynomials is the same as the number of des
endants of O(n) at level N : to the

given partition we 
an asso
iate the operator

∂knτ ψ+∂
1+kn−1+kn
τ ψ+ . . . ∂

n−1+k1+···+kn
τ ψ+

Conversely, given an operator of the form

∂p1τ ψ+ . . . ∂
pn
τ ψ+ , 0 ≤ p1 < p2 · · · < pn

of weight N + n2

2
, one 
an de�ne a partition as kn = p1, kn−1 = p2 − kn − 1, . . . and thus

asso
iate a polynomial solution of the form fa
tor equations with appropriate asymptoti


behaviour. It is important to emphasize that we do not 
laim that the form fa
tor related

to PN
n belongs to the operator above, what we have shown is only that the dimension of

the spa
e of operators with 
ertain s
aling dimension is the same as the dimension of the

solution of the form fa
tor equations.
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3.3 The boundary s
aling Lee-Yang model

The s
aling Lee-Yang model with boundary is a 
ombined bulk and boundary perturbation

of the boundary version of the M(2/5) minimal model [7, 18℄. In the bulk the perturbation

is given by the unique relevant spinless �eld φ, at the boundary the perturbation depends

on whi
h of the two possible 
onformal boundary 
onditions is present in the unperturbed

model. One, denoted by 1 in [18℄, does not have any relevant boundary �elds - thus 
an

have no boundary perturbation either -, while the other, denoted Φ in [18℄, has a single

relevant boundary �eld ϕ with s
aling dimension −1/5. In this latter 
ase the general

perturbed a
tion is

Aλ,Φ(h) = AΦ + λ

∞
∫

−∞

dy

0
∫

−∞

dxφ(x, y) + h

∞
∫

−∞

dyϕ(y),

where AΦ denotes the a
tion for M(2/5) with the Φ boundary 
ondition imposed at x = 0,
and λ and h denote the bulk and boundary 
ouplings respe
tively. The a
tion of Aλ,1 is

similar, but the last term on the right hand side is missing. If λ > 0 then in all 
ases the

bulk behaviour is des
ribed by an integrable massive theory having only a single parti
le

type with the following S matrix [19℄:

S(θ) = −
(

1

3

)(

2

3

)

= −
[

1

3

]

; (x) =
sinh

(

θ
2
+ iπx

2

)

sinh
(

θ
2
− iπx

2

) .

The pole at θ = 2πi
3


orresponds to the �ϕ3
property�, i.e. the parti
le appears as a bound

state of itself. The minimal bulk two parti
le form fa
tor whi
h has only a zero at θ = 0
and a pole at θ = 2πi

3
in the strip 0 ≤ ℑm(θ) < π has the form [17℄:

f(θ) =
y − 2

y + 1
v(iπ − θ)v(−iπ + θ) , y = eθ + e−θ,

where

v(θ) = exp

{

2

∫ ∞

0

dt

t
ei

θt
π

sinh t
2
sinh t

3
sinh t

6

sinh2 t

}

.

In the boundary theory with the perturbed Φ boundary, the re�e
tion amplitude of the

parti
le depends on the strength of the 
oupling 
onstant of the boundary �eld as [18℄

R(θ)Φ = R0(θ)R(b, θ) =

(

1

2

)(

1

6

)(

−2

3

)[

b+ 1

6

] [

b− 1

6

]

,

where the dimensionless parameter b is related to the dimensionful h as

h(b) = sin

(

(

b+
1

2

)π

5

)

m(λ)6/5hcrit, hcrit = −π 3

52
4

55
1

4

sin 2π
5

√

Γ(3
5
)Γ(4

5
)

(

Γ(3
5
)

Γ(3
5
)

)

6

5

,
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and m(λ) is the mass of the parti
le giving the overall s
ale in the infrared des
ription. In

the 
ase of the 1 boundary the re�e
tion amplitude is the parameter independent expression

R(θ)1 =

(

1

2

)(

1

6

)(

−2

3

)

.

Note that R(θ)1 is identi
al to R(θ)Φ at b = 0 and so both have a pole at θ = iπ/2 
oming

from the

(

1
2

)

blo
k but their g fa
tors di�er in a sign [13℄.

3.3.1 Lee-Yang model with perturbed Φ boundary

We 
onsider �rst the Lee-Yang model with perturbed Φ boundary. The 1PFF 
orrespond-

ing to R(θ)Φ is 
hosen as

r(θ) =
i sinh θ

(sinh θ − i sin π(b+1)
6

)(sinh θ − i sin π(b−1)
6

)
u(θ),

where

u(θ) = exp

{
∫ ∞

0

dt

t

[

1

sinh t
2

− 2 cosh
t

2
cos

[(

iπ

2
− θ

)

t

π

]

sinh 5t
6
+ sinh t

2
− sinh t

3

sinh2 t

]}

.

Note that r ∼ 1 at y → ∞, and r(θ) satis�es the r(θ + iπ) = r(θ)∗ reality 
ondition for

real θ. The general n-parti
le form fa
tors have the form

Fn(θ1, . . . , θn) = HnQn(y1, . . . , yn)
∏

i

r(θi)

yi

∏

i<j

f(θi − θj)f(θi + θj)

yi + yj
, (20)

where we separated a normalizing fa
tor Hn from the polynomials Qn. The various Fn-s

are related to ea
h other by both the kinemati
al and the dynami
al singularity equations,

sin
e the S-matrix is nontrivial and also has a ϕ3
pole with Γ = i2

1

23
1

4
. In addition, these

Fn-s also have to satisfy the equation 
oming from the residue of the pole at θ = iπ/2:

−i Res

θ=iπ/2
Fn+1(θ, θ1, . . . , θn) =

gΦ
2

(

1−
n
∏

j=1

S(i
π

2
− θj)

)

Fn(θ1, . . . , θn). (21)

Our strategy is to solve the re
ursion equations 
oming from the �rst two 
onditions �rst

and 
he
k whether the solutions also satisfy the third requirement (21). By 
hoosing the

normalizing fa
tors Hn and introdu
ing the useful quantities βk

Hn = N

(

i3
1

4

2
1

2 v(0)

)n

βk(b) = 2 cos
π

6
(b+ k), k ∈ Z, (22)

the overall normalization N drops out and the re
ursion equations 
oming from the dy-

nami
al (resp. kinemati
al) singularities read

Q2(y+, y−) = (y2 − β2
−3)Q1(y),

Qn+2(y+, y−, y1, . . . , yn) = Qn+1(y, y1, . . . , yn) (y
2 − β2

−3)
n
∏

i=1

(y + yi), n > 0; (23)
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Qn+2(−y, y, y1, . . . , yn) = Qn(y1, . . . , yn) (y
2 − β2

−1)(y
2 − β2

1)Pn, (24)

where

Pn =
1

2(y+ − y−)

[

n
∏

i=1

(yi − y−)(yi + y+)−
n
∏

i=1

(yi + y−)(yi − y+)

]

, (25)

and

y+ = ωx+ ω−1x−1; y− = ω−1x+ ωx−1; x = eθ; ω = ei
π
3 , y = x+ x−1. (26)

Next we present the minimal solution of these re
ursion equations up to n = 3. The

solution is 
alled minimal, if the leading overall degrees of the Fn-s in all of the y variables
are the smallest possible ones. Of 
ourse the solution also depends on the input fun
tion

Q1(y1). Sin
e F1 
an have no pole at θ = iπ/2 while r(θ)/y has one, Q1 must be 
hosen to


an
el this pole; the 
hoi
e with the minimal degree is Q1(y1) = y1 = σ1(y1). Using this as
input, we �nd from (23 ,24) the unique solution

Q1(y1) = σ1, Q2(y1, y2) = σ1(σ2 + 3− β2
−3),

Q3(y1, y2, y3) = σ1
[

σ1(σ2 + β2
−1)(σ2 + β2

1)− (σ2 + 3)(σ1σ2 − σ3)
]

. (27)

The remarkable property of this solution is that it 
ontains no free parameters. A simple


ounting of the various powers shows that the leading overall degree of F1, F2, and F3

vanish.

To 
he
k eq.(21) we need the following relations following from the expli
it solution

(27) and from the various identities among the βk-s:

Q2(0, y2) = σ1(y2)(3− β2
−3),

Q3(0, y2, y3) = β1β−1σ1(y2, y3)Q2(y2, y3) = (3− β2
−3)σ1(y2, y3)Q2(y2, y3).

Indeed using them in eq.(21) leads to a 
onsisten
y 
ondition on the ratio of the Hn-s:

Hn+1

Hn
r(i

π

2
)(3− β2

−3) = −2i
√
3gΦ, n = 1, 2.

Sin
e

r(i
π

2
) =

4u(iπ
2
)

i(
√
3− β−3)2

, and gΦ = i2(3)1/4(2−
√
3)1/2

√
3 + β−3√
3− β−3

,

the b dependen
e 
an
els from the 
onsisten
y 
ondition and using the a
tual form of the

Hn-s leads to

u(iπ
2
)√

2v(0)
=

√
3 (2−

√
3)1/2,

whi
h we 
he
ked numeri
ally up to 7 digits.
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To test these form fa
tors numeri
ally against the predi
tions of 
onformal �eld theory,

we take the spe
tral representation of the boundary two-point fun
tion

〈0|O(t)O(0)|0〉 =

∞
∑

n=0

∫ ∞

0

dθ1 . . . dθn
n!(2π)n

FO
n (θ1, . . . , θn)

+FO
n (θ1, . . . , θn)e

−mt
∑n

i=1
cosh θi

=
∞
∑

n=0

(−)n
∫ ∞

0

dθ1 . . . dθn
n!(2π)n

|FO
n (θ1, . . . , θn)|2e−mt

∑n
i=1

cosh θi

whi
h we trun
ate to the �rst few terms in the boundary form fa
tor expansion. Sin
e the

minimal solution of the form fa
tor problem has the mildest UV behaviour it is natural to

assume, that in the UV it 
orresponds to the boundary �eld ϕ. Therefore 〈0|O(t)O(0)|0〉
obtained from the FF expansion must be 
ompared to the short distan
e expansion:

〈0|m 1

5ϕ(t)m
1

5ϕ(0)|0〉 = −(mt)
2

5 + (mt)
1

5Cϕ
ϕϕ〈m

1

5ϕ〉+ . . .

where appropriate powers of m were inserted to make the expression dimensionless and

the fusion 
oe�
ient is

Cϕ
ϕϕ = −

√

1 +
√
5

2

√

Γ(1
5
)Γ(6

5
)

Γ(3
5
)Γ(4

5
)

while the (b-dependent, dimensionless) va
uum expe
tation value

〈m 1

5ϕ〉 = − 5

6hcrit

cos(πb
6
)

cos( π
10
(2b+ 1))

is given expli
itly in [18℄. In analogy with the bulk 
ase [7℄ we 
hoose the normalization

fa
tor N in (22) as the va
uum expe
tation value of the boundary �eld

N = 〈m 1

5ϕ〉 (28)

With this 
hoi
e the boundary form fa
tor expansion gives

〈0|O(t)O(0)|0〉 = |FO
0 |2 −

∫ ∞

0

dθ

2π
|FO

1 |2e−mt cosh θ

+

∫ ∞

0

dθ1dθ2
2(2π)2

|FO
2 (θ1, θ2)|2e−mt(cosh θ1+cosh θ2)

−
∫ ∞

0

dθ1dθ2dθ3
6(2π)3

|FO
3 (θ1, θ2, θ3)|2e−mt(cosh θ1+cosh θ2+cosh θ3) + . . .

The two expansions are 
ompared on the next �gure
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where b = −1.05 and the dimensionless 
orrelation fun
tion is plotted against mt. The

predi
ted UV behaviour is given by the 
ontinuous line and the numeri
ally determined

form fa
tor expansion trun
ated at 1, 2 and 3 parti
le intermediate states is denoted by

the symbols �, × and ◦, respe
tively.
We 
he
ked that the agreement between the form fa
tor expansion trun
ated at three

parti
les and the UV CFT predi
tion holds for various values of the parameter b: indeed
as we 
hange b the two 
urves move together. The agreement above also 
on�rms our


hoi
e (28) for the normalization of the form fa
tors. Based on all these we asso
iate the

boundary operator 
orresponding to the minimal solution of the form fa
tor axioms to the

one, that in the UV limit be
omes the ϕ �eld of the boundary Lee-Yang model.

3.3.2 Lee-Yang model with the 1 boundary

The 1PFF 
orresponding to the parameter free R(θ)1 is 
hosen as

r1(θ) = i sinh θ u(θ),

where u(θ) is the same as in the previous subse
tion. Note that r1 also satis�es r1(θ+iπ) =
r1(θ)

∗
but its asymptoti
 behaviour r1 ∼ y2 at y → ∞ is di�erent from that of the r in the

previous 
ase. Sin
e R(θ)1 also has a pole at θ = iπ/2 we introdu
e a similar Ansatz as in

(20)

Fn(θ1, . . . , θn) = H1
nQn(y1, . . . , yn)

∏

i

r1(θi)

yi

∏

i<j

f(θi − θj)f(θi + θj)

yi + yj
, (29)
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with H1
n = 4nHn where Hn is the same as in (22). Then one �nds the following re
ursion

equations for the Qn-s from the dynami
al (resp. kinemati
al) singularity equations:

Q2(y+, y−) = Q1(y),

Qn+2(y+, y−, y1, . . . , yn) = Qn+1(y, y1, . . . , yn)
n
∏

i=1

(y + yi), n > 0; (30)

Qn+2(−y, y, y1, . . . , yn) = Qn(y1, . . . , yn)Pn, (31)

where the various symbols are the same as in eq.(23,24). Up to n = 4 the unique minimal

solution of these re
ursion equations with the input Q1(y1) = σ1 is

Q1(y1) = σ1, Q2(y1, y2) ∼ σ1, Q3(y1, y2, y3) ∼ σ2
1, Q4(y1, y2, y3, y4) ∼ σ2

1(σ2 + 3).

It is easy to show that the leading overall degree of the �rst four form fa
tors F1, . . . , F4 is

two. This indi
ates that the operator that 
orresponds to this set is di�erent from the one

en
ountered in the 
ase of the perturbed Φ boundary. Therefore in the 
onformal limit this

operator is di�erent from the ϕ �eld and this is in a

ord with the fa
t that only the identity

operator and its des
endents 
an live on the 
onformal boundary 
ondition 1. Based on

the asymptoti
s of the form fa
tors for large θ the 
orresponding operator has ultraviolet

dimension 2 and 
an be identi�ed with the unique su
h operator in the 
onformal va
uum

module whi
h is the L−2 des
endent of the identity. This identi�
ation is further 
on�rmed

by 
omparing the numeri
ally obtained trun
ated form fa
tor expansion to the 
onformal

two-point fun
tion.

Sin
e

r1(i
π

2
) = −u(iπ

2
), and g1 = −i2(3)1/4(2−

√
3)1/2,

(see also [13℄) one 
an readily show that these four form fa
tors also satisfy the equation


oming from the residue of the pole at θ = iπ/2.

3.4 The boundary sinh-Gordon model

The sinh-Gordon theory in the bulk is de�ned by the Lagrangian

2

:

L =
1

2
(∂µΦ)

2 − m2

b2
(cosh bΦ − 1)

It 
an be 
onsidered as the analyti
 
ontinuation of the sine-Gordon model for imaginary


oupling β = ib. The S-matrix of the model is

S(θ) = −
(

1 +
B

2

)(

−B
2

)

= −
[

−B
2

]

; B =
2b2

8π + b2

2

Note that the parameter b is used here with a di�erent meaning 
ompared to the former 
ase of the

boundary Lee-Yang model.
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The minimal bulk two parti
le form fa
tor belonging to this S-matrix is [14℄

f(θ) = N exp

[

8

∫ ∞

0

dx

x
sin2

(

x(iπ − θ)

2π

)

sinh xB
4
sinh(1− B

2
)x
2
sinh x

2

sinh2 x

]

,

and it satis�es

f(θ)f(θ + iπ) =
sinh θ

sinh θ + i sin πB
2

. (32)

The sinh-Gordon theory 
an be restri
ted to the negative half-line, but the integrability is

maintained only by imposing either the Diri
hlet

Φ(0, t) = ΦD
0

or the two parameter family of perturbed Neumann

VB(Φ(0, t)) =M0 cosh

(

b

2
(Φ(0, t)− Φ0)

)

−M0

boundary 
onditions. The latter interpolates between the Neumann and the Diri
hlet

boundary 
onditions, sin
e for M0 = 0 we re
over the Neumann, while for M0 → ∞ the

Diri
hlet boundary 
ondition with ΦD
0 = Φ0. The re�e
tion fa
tor whi
h depends on two


ontinuous parameters 
an be written as

R(θ) = R0(θ)R(E, F, θ) =

(

1

2

)(

1

2
+
B

4

)(

−1− B

4

)[

E − 1

2

] [

F − 1

2

]

in terms of the parameterization used in [20℄. They are related to the parameters of the

Lagrangian as

cos
E

16
(b2 + 8π) cos

F

16
(b2 + 8π) =

M0

Mcrit
cosh

bΦ0

2

sin
E

16
(b2 + 8π) sin

F

16
(b2 + 8π) = − M0

Mcrit
sinh

bΦ0

2

where Mcrit = m
√

2
b2 sinh(b2/8)

. Note that for generi
 values of the parameters (E 6= 0,

F 6= 0) this re�e
tion fa
tor has a pole at θ = iπ/2 
oming from the

(

1
2

)

fa
tor. Imposing

Diri
hlet boundary 
ondition instead of the general one 
orresponds to removing the F
dependent fa
tor fromR(θ). Then the remaining parameter E is related to the Φ0 boundary

value of the sinh-Gordon �eld as E = i8bΦ0/(b
2 + 8π).

3.4.1 Sinh-Gordon model with Φ0 = 0 Diri
hlet b.
.

This 
ase is interesting be
ause E = 0 implies that the pole at θ = iπ/2 is absent in this


ase. Therefore the equation 
oming from the residue of this pole is also absent and the
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form fa
tors are less restri
ted. The 1PFF 
orresponding to the re�e
tion amplitude on

the E = 0 Diri
hlet boundary is

r0(θ) =
sinh θ

sinh θ + i
u(θ, B),

where

u(θ, B) = exp

[

−2

∫ ∞

0

dx

x

[

cos(
iπ

2
− θ)

x

π
− 1

]

cosh x
2

sinh2 x

(

sinh
xB

4
+ sinh(1− B

2
)
x

2
+ sinh

x

2

)]

.

Note that r0 ∼ y at y → ∞ and has no pole at θ = iπ/2. At B = 0 - whi
h 
orresponds to

a free theory - u(θ, 0) 
an be integrated expli
itly yielding r0(θ)|B=0 = (−i sinh θ)/2; and
this, apart from a trivial normalizational phase 
oin
ides with the 1PFF for a free s
alar

with Diri
hlet b.
. (As dis
ussed in Se
tion 3.1.1 in this 
ase ∂xΦ(0, 0) is the operator

having one parti
le matrix element only).

We write the n parti
le form fa
tors in the general form:

Fn(θ1, . . . , θn) = HnQn(y1, . . . , yn)
∏

i

r0(θi)
∏

i<j

f(θi − θj)f(θi + θj)

yi + yj
.

Sin
e there is no self fusing pole in the S matrix of the sinh-Gordon model, the Fn-s

are related only by the kinemati
al singularity equations. Choosing the ratio of the Hn-s

appropriately the re
ursion equations originating from here take the form:

Qn+2(−y, y, y1, . . . , yn) = −Qn(y1, . . . , yn)Pn,

where Pn is given by eq.(25,26) with ω = eiπ
B
2
.

As r0 has no pole at θ = iπ/2 , one 
an have a minimal solution of this re
ursion

equations starting with Q1 = 1 whi
h has non vanishing form fa
tors for odd parti
le

numbers. We 
al
ulated up to n = 5 and found that the solution is uniquely given by

Q1(y1) = 1, Q3(y1, y2, y3) = −σ1,
Q5(y1, . . . , y5) = σ1[σ3σ2 − (ω + ω−1)2σ5 + (ω − ω−1)4σ1 − (ω − ω−1)2(σ3 + σ1σ2)],

with all the F1, F3 and F5 form fa
tors having leading overall degree one. There is a unique

lo
al operator with this property, namely ∂xΦ.
Of 
ourse one 
an also �nd non vanishing solutions with even parti
le numbers also

starting with a non trivial Q2. Sin
e F2 
an have no kinemati
al singularity, the minimal


hoi
e is Q2(y1, y2) = σ1. With this input we obtained again a unique solution

Q2(y1, y2) = σ1, Q4(y1, . . . , y4) = σ2
1(σ2 − (ω − ω−1)2),

where both the F2 and the F4 have leading overall degree two.

For Φ0 = 0 (E = 0) the Φ → −Φ re�e
tion symmetry of the bulk sinh-Gordon model

survives also in the boundary theory. Therefore the boundary operators 
an be 
lassi�ed as

even or odd ones, having only non-vanishing even or odd parti
le form fa
tors, respe
tively.

Thus the se
ond form fa
tor family 
an be identi�ed with the operator (∂xΦ)
2
.
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3.4.2 Sinh-Gordon model with Φ0 6= 0 Diri
hlet b.
.

For Φ0 6= 0 (E 6= 0) the re�e
tion fa
tor a
quires a pole at θ = iπ/2 due to the fa
t that

the �eld has a nontrivial va
uum 
on�guration. At the same time the re�e
tion symmetry

of the bulk sinh-Gordon model is violated in the boundary theory. Therefore the boundary

operators 
annot be 
lassi�ed into representations of this symmetry, and the equation


oming from the residue of the pole at θ = iπ/2 
onne
ts the form fa
tors with even and

odd parti
le numbers. Note that now this equation plays an essential role as it is the only

one that relates these two sets of form fa
tors to ea
h other.

The 1PFF 
orresponding to the re�e
tion amplitude on the E 6= 0 Diri
hlet boundary

is

rE(θ) =
sinh θ

sinh θ − i sin γ
u(θ, B) , γ =

π

2
(E − 1),

where u(θ, B) is the same as in the previous 
ase. Note that rE ∼ y at y → ∞.

Writing the n parti
le form fa
tors in the general form

Fn(θ1, . . . , θn) = HnQn(y1, . . . , yn)
∏

i

rE(θi)

yi

∏

i<j

f(θi − θj)f(θi + θj)

yi + yj
,

and 
hoosing the ratio of the Hn-s appropriately the re
ursion equations originating from

the kinemati
al singularity equation take the form:

Qn+2(−y, y, y1, . . . , yn) = (y2 − 4 cos2 γ)Qn(y1, . . . , yn)Pn, (33)

where Pn is given by eq.(25,26) with ω = eiπ
B
2
. Next we show how the equation 
oming

from the residue of the pole at θ = iπ/2:

−i Res

θ=iπ/2
Fn+1(θ, θ1, . . . , θn) =

gE
2

(

1−
n
∏

j=1

S(i
π

2
− θj)

)

Fn(θ1, . . . , θn), (34)

helps to eliminate the arbitrariness in the minimal solution of the re
ursion equations.

Q1(y1) = σ1 is the minimal 
hoi
e that guarantees that F1 has no pole at θ = iπ/2.
Using this in the re
ursion equation (33) gives that the most general Q3 has the form:

Q3(y1, y2, y3) = −σ2
1(σ2 + 4 cos2 γ) + (A+Bσ1)(σ1σ2 − σ3),

where A and B are arbitrary 
onstants. Eq.(34) leads to the following relation between Q3

and Q2:

H3rE(i
π

2
)Q3(0, y2, y3) = gE2 sin

Bπ

2
H2σ1(y2, y3)Q2(y2, y3).

Sin
e

Q3(0, y2, y3) = σ1
{

−σ1(σ2 + 4 cos2 γ) + (A+Bσ1)σ2
}

,

the expression in the 
urly bra
ket should be proportional to Q2. This observation �xes the

values of A and B: Q2 has to be proportional to σ1 to guarantee that F2 has no kinemati
al
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singularity and this requirement is met only if A = 0, while F2 has a leading degree not

ex
eeding that of F1 and F3 if B = 1. Thus with these two requirements one obtains a

parameter free solution starting with Q1 = σ1; up to n = 4 it has the form:

Q2(y1, y2) ∼ −4 cos2 γσ1, Q3(y1, y2, y3) = −σ1σ3 − 4 cos2 γσ2
1,

Q4(y1, . . . , y4) ∼ −4 cos2 γ(σ1σ3 + 4 cos2 γσ2
1)(σ2 + 4 sin2 πB

2
).

Note that both Q2 and Q4 vanish for γ = −π/2 (E = 0). Furthermore for E = 0 one also

has Q1/y1 = 1, and Q3/(y1y2y3) = −σ1, thus the solution goes over smoothly into the one

with E = 0. Sin
e

rE(i
π

2
) =

1

1− sin γ
, and gE =

2(1 + cos πB
4

+ sin πB
4
)

√

sin πB
2

cos γ

1− sin γ
,

the γ dependen
e 
an
els from the ratios of H3/H1 and H4/H2 when we use eq.(34) for

n = 1, 2, 3:

−iH4

H2
= −iH3

H1
=

(

1 + cos
πB

4
+ sin

πB

4

)2

4 sin
πB

2
.

In the b→ 0 limit these ratios vanish, therefore the higher form fa
tors de
ouple in a

ord

with the fa
t that the kinemati
al singularity axiom be
omes trivial for the free �eld theory.

4 Con
lusion

In this paper we treated the form fa
tor bootstrap for boundary operators in integrable

boundary quantum �eld theory. Although there have been earlier treatment of form fa
tors

for spe
i�
 (mainly latti
e) models [10, 11, 12℄, none of these has a
tually given a 
omplete

formulation similar to the axiomati
 approa
h by Smirnov for the bulk 
ase [3℄. The present

work initiates an extension of this axiomati
 program to boundary �elds.

We have given a 
omplete axiomatization of the properties of boundary form fa
tors,

derived from �rst prin
iples of quantum �eld theory (unitarity and the boundary extension

of the LSZ redu
tion formulae). In parti
ular, the axiom des
ribing boundary kinemati


singularities is an entirely new result of this paper, as this has never been treated before

in any previous study. We have shown that these axioms are 
onsistent with many known

aspe
ts of integrable boundary �eld theory. In parti
ular, the relation between the residue

of the re�e
tion fa
tor at iπ/2 and the one-parti
le 
ontribution to the boundary state,

noted previously in the 
ontext of �nite size e�e
ts, was 
on�rmed on
e more as a ne
essary


ondition for the 
onsisten
y between the boundary and the bulk kinemati
al axiom (the

only ex
eption to this relation is when the bulk is free, but then the two axioms are trivial).

Therefore it seems that this parti
ular relation is a 
onsequen
e of integrability and the

existen
e of a nontrivial bulk s
attering matrix.

We then pro
eeded to give a systemati
 method to solve the boundary form fa
tor

axioms for the 
ase of diagonal s
attering. The solution is a natural generalization of the
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bulk 
ase, but ne
essitates the introdu
tion of a minimal boundary form fa
tor fun
tion in

addition to the already known minimal bulk form fa
tor. The periodi
ity, permutation and

re�e
tion axioms 
an then be solved by a general Ansatz, and the residue axioms 
an be

re
ast as re
ursion relations for 
ertain polynomial fun
tions whi
h 
hara
terize the form

fa
tor solution 
ompletely.

In parti
ular, we treated the 
ase of the free boson and the free fermion (non
riti
al

Ising model with boundary magneti
 �eld), where the polynomial solutions of the form

fa
tor axioms were shown to be identi
al to the expli
it solutions obtained from the �eld

theory, and it was also shown that the polynomial solutions of the form fa
tor bootstrap

mat
h the full boundary operator 
ontent expe
ted from the Lagrangian approa
h.

As example for the intera
ting 
ase, we �rst treated the Lee-Yang model, where the

boundary kinemati
al singularity axiommakes its �rst appearan
e, and it is very important

in order to distinguish between boundary 
onditions that have di�erent 
onformal limits.

We have also 
omputed the spe
tral expansion of the two-point 
orrelation fun
tion for the

operator with the lowest 
onformal dimension and have shown that it mat
hes perfe
tly

with the ultraviolet expansion of the same 
orrelation fun
tion obtained from boundary


onformal �eld theory.

Our se
ond intera
ting example is the sinh-Gordon model, with Diri
hlet boundary


ondition (an extension to the general 
ase is in prin
iple straightforward, but we de
ided

to treat only the Diri
hlet 
ase to keep it short and simple). The boundary 
onditions with

zero and with nonzero value of the �eld on the boundary are di�erentiated again by the

boundary kinemati
al axiom, and we have shown that the results of the boundary form

fa
tor bootstrap �t perfe
tly well with expe
tations from the Lagrangian approa
h.

An open question is to �nd and 
lassify non-minimal solutions of the form fa
tor equa-

tions and interpret them in terms of the lo
al boundary operator algebra of the underlying

�eld theory, extending the method presented for the bulk sinh-Gordon model in [21℄. In

parti
ular it is interesting to �nd out whether the 
ounting of operators in the 
onformal

limit 
an be mat
hed with the full set of solutions in the intera
ting 
ase.

It is obvious that the results presented in this paper 
an be applied dire
tly to any

integrable boundary quantum �eld theory for whi
h the fa
torized s
attering theory is

known, and that they formulate a well-de�ned program to determine form fa
tors and


orrelation fun
tions of boundary operators, similar to the approa
h used in the bulk 
ase.

We have also shown how to solve the axioms for theories with diagonal bulk and boundary

s
attering.

It is an interesting problem to extend these results to the 
ase of nondiagonal s
attering

(with boundary sine-Gordon theory as the most prominent example). The extension of the

axioms is straightforward: they must be de
orated by multiplet indi
es, just like in the

bulk 
ase, although here we avoided to give this extension expli
itly to keep the exposition

simple. However, solving them will probably en
ounter mu
h more di�
ulties, and just as

in the bulk, new methods must be devised for the task, like the boundary extension of the

Lukyanov free �eld representation in [12℄.

The 
omparison to the Lagrangian and perturbed 
onformal �eld theory des
ription

would be greatly fa
ilitated by establishing sum rules for the spe
tral representation of
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the boundary 
orrelators, similar to the c-theorem [22℄ and ∆-theorem [23℄ in the bulk


ase, and is one of the most important problems left open by the present work. Another

promising open dire
tion is to 
onsider possible appli
ations of boundary form fa
tors and


orrelation fun
tions in the area of boundary quantum �eld theory and 
ondensed matter.
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A Heuristi
 derivation of the FF axioms

We present some heuristi
 arguments, along the lines of [3℄, for the derivation of boundary

form fa
tor axioms using the boundary redu
tion formula [9℄.

We analyze the analyti
ity properties of the form fa
tor

FO
n := FO

n (θ1, θ2, . . . , θn) = 〈0|O(0)|θ1, θ2, . . . , θn〉in

as a fun
tion of the variable θ1.
We follow the notations of [9℄: The asymptoti
 
reation/annihilation operators 
an be

expressed in terms of the free asymptoti
 �elds as

ain(θ) = 2i

∫ 0

−∞

dx cos(k(θ)x)eiω(θ)t
↔

∂ tΦin(x, t) (35)

a+in(θ) = −2i

∫ 0

−∞

dx cos(k(θ)x)e−iω(θ)t
↔

∂ tΦin(x, t) .

where k(θ) = m sinh θ and ω(θ) = m cosh θ. The in state is a free state and we have

〈0|O(0)|θ1, θ2, . . . , θn〉in = 〈0|O(0)a+in(θ1)|θ2, . . . , θn〉in (36)

We use (35) together with

O(0)Φin(x, t) = [O(0),Φin(x, t)] + Φin(x, t)O(0)

to obtain

FO
n = dis
.− 2i

∫ 0

−∞

dx cos(k(θ1)x)e
−iω(θ1)t

↔

∂ t 〈0|[O(0),Φin(x, t)]|θ2, . . . , θn〉in . (37)

where the dis
onne
ted part is

dis
. = 〈0|a+in(θ1)O(0)|θ2, . . . , θn〉in = 〈0|a+in(θ1)|0〉FO
n−1(θ2, . . . , θn)
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Note that in theories with nonzero va
uum expe
tation values of the �eld Φ the matrix

element 〈0|a+in(θ1)|0〉 is nonzero and 
an be written as

〈0|a+in(θ1)|0〉 =
g

2
2πδ(θ1 −

iπ

2
)

whi
h 
orresponds to the one parti
le term in the boundary state in the 
rossed 
hannel

[5℄. It was 
onje
tured in [7℄ and later 
on�rmed using TBA arguments [24℄ that the one

parti
le 
ontribution to the boundary state has a 
oe�
ient equal to

g
2
rather than g as

suggested in [5℄. In the 
hannel we use here this translates dire
tly into the equation above.

Supposing that the in �eld 
an be expressed in terms of the intera
ting �eld as Φ(x, t) →
Z1/2Φin(x, t) for t → −∞ and that [O(0),Φ(x, 0)] = 0, the 
onne
ted part 
an be written

in the form


onn. = iZ−1/22

∫ 0

−∞

dx

∫ 0

−∞

dt∂t

{

cos(k(θ1)x)e
−iω(θ1)t

↔

∂ t 〈0|[O(0),Φ(x, t)]|θ2, . . . , θn〉in
}

Performing the usual partial integration while taking 
are of the surfa
e term we obtain


onn. = iZ−1/22

∫

d2xe−iω(θ1)t cos(k(θ1)x)Θ(−t)〈0|[O(0), J(x, t)]|θ2, . . . , θn〉in (38)

where J(x, t) = {�+m2+δ(x)∂x}Φ(x, t) and the integration goes over the entire spa
etime.

The range of the integration is the interior of the past light 
one due to the presen
e of

Θ(−t) and of the vanishing of [O(0), J(x, t)] on spa
e-like intervals. The analyti
 properties
of the integral are determined by the exponent for large negative times. The exponent

de
reases if ℑm(ω(θ1)) > 0 thus the in form fa
tor (θ1 > θ2 > · · · > θn > 0) allows an
analyti
al 
ontinuation into the domain:

0 < ℑm(θ1) < π

Repeating the same pro
edure for the out matrix elements

FO
n (−θ1,−θ2, . . . ,−θn) = 〈0|O(0)| − θ1,−θ2, . . . ,−θn〉out

we obtain the domain of analyti
al 
ontinuation: 0 < ℑm(−θ1) < π.
To derive the 
rossing relation we 
onsider the following matrix element

FO
1n−1 := FO

1n−1(θ1|θ2, . . . , θn) = in〈θ1|O(0)|θ2, . . . , θn〉in
Applying the redu
tion formula to the parti
le with rapidity θ1 (35) we obtain

FO
1n−1 = dis
− 2i

∫ 0

−∞

dx cos(k(θ1)x)e
iω(θ1)t

↔

∂ t 〈0|[O(0),Φin(x, t)]|θ2, . . . , θn〉in

where the dis
onne
ted part (supposing θ1 ≥ θ2) is

dis
. = 〈0|O(0)a+in(θ1)|θ2, . . . , θn〉in = in〈θ1|θ2〉inFO
n−2(θ3, . . . , θn)
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Performing a partial integration as before the result for the 
onne
ted 
omponent is


onn. = iZ−1/22

∫

d2xeiω(θ1)t cos(k(θ1)x)Θ(−t)〈0|[O(0), J(x, t)]|θ2, . . . , θn〉in (39)

whi
h has an analyti
 
ontinuation for

−π < ℑm(θ1) < 0

Comparing (38) with (39) and using thatm cosh(θ1+iπ) = −m cosh θ1 the 
rossing relation
(3) is proved. Similar result 
an be obtained for an out state and the −θ1 < −θ2 < · · · <
−θn < 0 range of the parameters.

The re�e
tion property (Axiom II) 
an be shown by 
onsidering

FO
n (θ1, θ2, . . . , θn) = 〈0|O(0)|θ1, θ2, . . . , θn〉in

and 
rossing all parti
les ex
ept the one with rapidity θn to the left. Now inserting a


omplete set of out states we have

in〈. . . |O(0)|θn〉in =
∑

out

in〈. . . |A(0)|n〉out out〈n|θn〉in

where only the �rst two terms are nonzero:

in〈. . . |O(0)|θn〉in = in〈. . . |A(0)|0〉〈0|θn〉in +
∑

θ

〈. . . |A(0)|θ〉out out〈θ|θn〉in

The 
onne
ted part gives the required R fa
tor while the dis
onne
ted one 
ombined with

the dis
onne
ted part in (37) and the permutation property gives the boundary kinemati
al

singularity.

The permutation property in the bulk 
ase is usually derived from very similar argu-

mentation we used above for showing the re�e
tion property. Note, however, that the

same result 
an be obtained from the analysis of the singularity stru
ture of the Green

fun
tions: the part, whi
h is responsible for the dis
ontinuity in the form fa
tor by 
hang-

ing two neighboring rapidities, is related to the bulk S-matrix. The permutation property

in the boundary 
ase (Axiom I) 
an be derived only from the se
ond approa
h, namely from

a detailed investigation of the singularity stru
ture of the Green fun
tions. By extending

the result on the two point fun
tion in [9℄ one 
an show that multi point fun
tions have

momentum preserving parts identi
al to their bulk 
ounterparts and exa
tly these parts


ontribute only, when two neighboring (both positive) rapidities are 
hanged, and 
ause

the same dis
ontinuity in the form fa
tor we met in the bulk 
ase.

The kinemati
al singularity equation (Axiom IV) 
an be obtained (using the permu-

tation and re�e
tion axioms) from the analysis of the dis
onne
ted 
omponents in the


rossing relations as obtained for the in and for the out states:

FO
1n−1(±θ1| ± θ2, . . . ,±θn) = FO

n (iπ ± θ1,±θ2, . . . ,±θn) + 2πδ(θ1 − θ2)F
O
n−2(±θ3, . . . ,±θn)

Although our derivation of the boundary form fa
tor axioms is heuristi
 to some extent

we expe
t that the formulation of the same ideas in a rigorously de�ned quantum �eld

theoreti
al framework would lead to the proper and mathemati
ally founded derivation

(but note that this has not been performed yet in the bulk 
ase either).
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B Formal derivation of the FF axioms

Here we show how the boundary form fa
tor axioms 
an be formally derived from a bound-

ary analogue of the Faddeev-Zamolod
hikov algebra.

In the bulk 
ase one introdu
es 
reation Z∗(θ) and annihilation Z(θ) operators 
orre-
sponding to asymptoti
 states. They are de�ned for real rapidities θ ∈ R and satisfy the

following de�ning relations

Z∗(θ1)Z
∗(θ2) = S(θ1 − θ2)Z

∗(θ2)Z
∗(θ1)

Z(θ1)Z(θ2) = S(θ1 − θ2)Z(θ2)Z(θ1)

Z(θ1)Z
∗(θ2) = S(θ2 − θ1)Z

∗(θ2)Z(θ1) + 2πδ(θ1 − θ2) (40)

Extending Z,Z∗
to imaginary rapidities (treating θ as a 2πi periodi
 
omplex variable) we

en
ounter singularities in their produ
ts at θ1 = θ2 ± iπ with residues

−i Res

θ1=θ2+iπ
Z∗(θ1)Z

∗(θ2) = 1

and

−i Res

θ1=θ2+iπ
Z(θ1)Z(θ2) = 1

These 
an be formulated by postulating the 
rossing property

Z(θ) = Z∗(θ + iπ)

and taking into a

ount the de�ning relations (40). We note that using this identi�
ation

all of the de�ning relations (40) 
an be 
ombined into a single one

Z∗(θ1)Z
∗(θ2) = S(θ1 − θ2)Z

∗(θ2)Z
∗(θ1) + 2πδ(θ1 − θ2 − iπ)

In the boundary 
ase the generators Z,Z∗
are de�ned only for positive values of the ra-

pidity arguments and additionally two new formal generators are introdu
ed 
reating the

boundary va
uum as follows

|0〉B = B∗|0〉 , B〈0| = 〈0|B

We introdu
e two new relations

Z∗(θ)B∗ = R(θ)Z∗(−θ)B∗

and

BZ(θ) = BZ(−θ)R(−θ)
whi
h des
ribe how we 
an extend the generators for negative rapidities. By analyti
ally


ontinuing in the rapidity again we have singularities in the operator produ
ts

−i Res
θ=iπ

2

Z∗(θ)B∗ =
g

2
B∗
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and

i Res

θ=−iπ
2

BZ(θ) =
g

2
B

They would 
orrespond to parti
les with real rapidity in the 
rossed 
hannel (ex
hanging

time and spa
e 
oordinates). These new relations 
an again be summarized in a single one

Z∗(θ)B∗ = R(θ)Z∗(−θ)B∗ + 2πδ(θ − iπ

2
)
g

2
B∗

together with its formal 
onjugate

BZ(θ) = BZ(−θ)R(−θ) + 2πδ(θ +
iπ

2
)
g

2
B

We 
laim that representing the form fa
tor of the boundary operator O(0) as

FO
n (θ1, . . . , θn) = 〈0|BO(0)Z∗(θ1) . . . Z

∗(θn)B
∗|0〉

and supposing lo
ality

[O(0), Z∗(θ)] = 0

we 
an re
over all the non-singularity type form fa
tor axioms immediately. For deriving

the singularity axioms we have to observe that singularity appears not only from a single

term. E.g. in the boundary kinemati
al singularity axiom, the form fa
tor FO
n (θ1, . . . , θn)

exhibits a singularity in θ1 at i
π
2

oming from two pla
es: the operator produ
t of both B

and B∗
with Z∗(θ1) is singular. Supposing that they appear in additive terms of the form

fa
tor we 
an obtain the desired formula.

Finally, we note that formulating the boundary FZ algebra in the spirit of [25℄ might

lead to a more rigorous derivation of our axioms.

Referen
es

[1℄ G. Mussardo, Phys.Rept. 218, (1992) 215-379.

[2℄ P. E. Dorey, Exa
t S matri
es, Le
ture Notes in Physi
s, Springer, eds. Zalán Horváth

and László Palla, Eötvös Summer S
hool in Physi
s: Conformal Field Theories and

Integrable Models, Budapest, Hungary, 13-18 Aug 1996.

[3℄ F.A. Smirnov: Form-fa
tors in 
ompletely integrable models of quantum

field theory, Adv. Ser. Math. Phys. 14 (1992) 1-208.

[4℄ H. Babujian, A. Fring, M. Karowski, A. Zapletal, Nu
l.Phys. B538 (1999) 535-586.

[5℄ S. Ghoshal and A.B. Zamolod
hikov, Int. J. Mod. Phys. A9 (1994) 3841-3886

(Erratum-ibid. A9 4353), hep-th/9306002.

37

http://arxiv.org/abs/hep-th/9306002


[6℄ G. Mussardo, Spe
tral Representation of Correlation Fun
tions in two-dimensional

Quantum Field Theories, hep-th/9405128.

[7℄ P. Dorey, M. Pillin, R. Tateo and G. Watts, Nu
l. Phys. B594 (2001) 625-659.

[8℄ J.L. Cardy and G. Mussardo, Nu
l. Phys. B340 (1990) 387-402.

[9℄ Z. Bajnok, G. Böhm and G. Taká
s, J. Phys. A35 (2002) 9333-9342, hep-th/0207079.

Z. Bajnok, G. Böhm and G. Taká
s, Nu
l. Phys. B682 (2004) 585-617,

hep-th/0309119.

[10℄ M. Jimbo, R. Kedem, H. Konno, T. Miwa, R. Weston, Nu
l. Phys. B448 (1995)

429-456.

[11℄ Y.-H. Quano, Int.J.Mod.Phys. A15 (2000) 3699-3716, J. Phys. A33 (2000) 8275,

J.Phys. A34 (2001) 8445-8464.

[12℄ B. Hou, K. Shi, Y. Wang, W.-l. Yang, Int. J. Mod. Phys. A12 (1997) 1711-1741.

[13℄ P. Dorey, R. Tateo and G. Watts, Phys. Lett. B448 (1999) 249-256.

[14℄ A. Fring, G. Mussardo, P. Simonetti, Nu
l.Phys. B393 (1993) 413-441.

[15℄ M. Karowski and P. Weisz, Nu
l. Phys. B139 (1978) 455-476.

[16℄ G. Del�no and G. Mussardo, Nu
l. Phys. B455 (1995) 724-758, hep-th/9507010.

[17℄ Al.B. Zamolod
hikov, Nu
l. Phys. B348 (1991) 619-641.

[18℄ P. Dorey, A. Po
klington, R. Tateo and G. Watts, Nu
l. Phys. B525 (1998) 641-663.

[19℄ J.L. Cardy and G. Mussardo, Phys. Lett. B225 (1989) 275-278.

[20℄ E. Corrigan, A. Taormina, J.Phys. A33 (2000) 8739.

[21℄ A. Koubek and G. Mussardo, Phys. Lett. B311 (1993) 193-201, hep-th/9306044.

[22℄ A. B. Zamolod
hikov, Pis'ma Zh Eksp. Theor. Fiz. 43 (1986) 565. (JETP Lett. 43

(1986) 730.)

[23℄ G. Del�no, P. Simonetti and J-L. Cardy, Phys. Lett. B387 (1996) 327-333.

[24℄ Z. Bajnok, L. Palla and G. Taká
s, Nu
l. Phys. B716 (2005) 519-542.

[25℄ M.R. Niedermaier, Nu
l.Phys. B440 (1995) 603-646; Erratum-ibid. B456 (1995) 755.

38

http://arxiv.org/abs/hep-th/9405128
http://arxiv.org/abs/hep-th/0207079
http://arxiv.org/abs/hep-th/0309119
http://arxiv.org/abs/hep-th/9507010
http://arxiv.org/abs/hep-th/9306044

	Introduction
	Boundary form factors
	Definitions
	Axioms
	Consistency checks
	General solution
	One particle form factors
	Two-particle form factors
	Multi-particle form factors

	Two-point function

	Model studies
	Massive scalar with linear boundary interaction
	Direct calculation
	Solving the form factor equations

	Ising model with boundary magnetic field 
	Direct calculation
	Solution of the FF bootstrap

	The boundary scaling Lee-Yang model
	Lee-Yang model with perturbed  boundary 
	Lee-Yang model with the 1 boundary

	The boundary sinh-Gordon model
	Sinh-Gordon model with 0=0 Dirichlet b.c.
	Sinh-Gordon model with 0=0 Dirichlet b.c.


	Conclusion
	Heuristic derivation of the FF axioms
	Formal derivation of the FF axioms 

