View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by ELTE Digital Institutional Repository (EDIT)

On the boundary form factor program

Z. Bajnok', L. Palla?, and G. Takacs'
13th October 2018

Y Theoretical Physics Research Group, Hungarian Academy of Sciences,
1117 Budapest, Pdazmdny Péter sétiny 1/A, Hungary
2 Institute for Theoretical Physics, Edtvés University,
1117 Budapest, Piazmdny Péter sétiny 1/A, Hungary

Abstract

Boundary form factor axioms are derived for the matrix elements of local boundary
operators in integrable 1+1 dimensional boundary quantum field theories using the
analyticity properties of correlators via the boundary reduction formula. Minimal
solutions are determined for the integrable boundary perturbations of the free boson,
free fermion (Ising), Lee-Yang and sinh-Gordon models and the two point functions
calculated from them are checked against the exact solutions in the free cases and
against the conformal data in the ultraviolet limit for the Lee-Yang model. In the
case of the free boson/fermion the dimension of the solution space of the boundary
form factor equation is shown to match the number of independent local operators.
We obtain excellent agreement which proves not only the correctness of the solutions
but also confirms the form factor axioms.

arXiv:hep-th/0603171v2 21 May 2006

1 Introduction

The bootstrap program aims to classify and explicitly solve 141 dimensional integrable
quantum field theories by constructing all of their Wightman functions. The first stage is
the S-matrix bootstrap: the scattering matrix, connecting asymptotic in and out states,
is determined from its properties such as factorizability, unitarity, crossing symmetry and
the Yang-Baxter equation (YBE) supplemented by the maximal analyticity assumption.
The result is the complete on-shell solution of the theory, i.e. the spectrum of excitations
and their scattering amplitudes, which can be related to some independent definition of
the model as a perturbed conformal field theory or a Lagrangian QFT (for reviews see
I, 2]). The second step is the form factor bootstrap, which allows one to determine
matrix elements of local operators between asymptotic states using their analytic properties
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originating from the already known S-matrix. Supposing maximal analyticity leads to a set
of solutions each of which corresponds to a local operator of the theory. The form factors are
then used to build the correlation (Wightman) functions via their spectral representations,
yielding a complete off-shell description of the theory (see [3, @] for reviews).

The first step of an analogous bootstrap program for 1+1 dimensional integrable bound-
ary quantum field theories, the boundary R-matrix bootstrap, has been developed for sev-
eral theories. In boundary theories the asymptotic states are connected by the reflection R-
matrix, which satisfies unitarity and boundary crossing unitarity; for integrable boundary
QFT, it also satisfies the boundary YBE (BYBE) and boundary bootstrap requirements.
These equations supplemented by maximal analyticity assumptions make possible to de-
termine the reflection matrices and provide the complete information about the theory on
the mass shell [B].

For the second step matrix elements of local operators between asymptotic states have
to be computed. In a boundary quantum field theory there are two types of operators, the
bulk and the boundary operators, where their names indicate their localization point. Due
to the broken translational invariance one point functions of bulk operators may acquire
nontrivial space dependence behaving analogously to the two point functions in a bulk
theory. Indeed this one point function can be calculated in the crossed channel, where
the role of time and space is changed and the spatial boundary appears as a temporal
one represented as an initial (boundary) state in the matrix element. Inserting a complete
system of the bulk Hilbert space a spectral representation for the one point functions can
be obtained in terms of the bulk form factors and the matrix element of the boundary state
[6, [7]. Truncating this expansion at finite intermediate states provides a convergent large
distance expansion. However, matrix elements of boundary operators cannot be computed
in this way and the purpose of the present paper is to develop a technique to compute their
correlation functions.

In this paper we initiate the second step of the boundary bootstrap program, namely
the boundary form factor program for calculating the matrix elements of local boundary
operators between asymptotic states. We derive their analytic structure from that of the
R-matrix which, when supplemented by the assumption of maximal analyticity, leads to
their determination. In the bulk case, it was shown in [8] that the solution space of the
form factor equations can be brought into one-to-one correspondence with the operator
content of the model. Based on this, we expect that the classification of the solutions of
the boundary form factor axioms provides information on the boundary operator content
of the theory, which in the ultraviolet limit is in a one-to-one correspondence with the
Hilbert space of the model. Using the explicit form of the boundary form factors the
spectral representation for the boundary correlation functions can be obtained.

The paper is organized as follows: first we define the boundary form factors by intro-
ducing asymptotic in and out multi-particle states, which are related by the multi-particle
reflection matrix. Simple crossing relations are presented from which the form factor ax-
ioms follow easily, and then the axioms are verified by some consistency requirements. We
outline a general strategy to solve theories with diagonal bulk scattering and boundary
reflection amplitudes, and to compare the resulting two-point functions with their ultra-



violet limits. This idea is applied to integrable boundary perturbations of several models,
such as the free boson model, free fermion (alias Ising) field theory, the scaling Lee-Yang
model and sinh-Gordon theory. Appendix A contains a heuristic derivation of the cross-
ing relations from the boundary reduction formula [9], while in Appendix B we present a
formal derivation of the boundary form factor axioms from the boundary version of the
Faddeev-Zamolodchikov algebra.

2 Boundary form factors

2.1 Definitions

The Hilbert space of a boundary quantum field theory consists of multi-particle states,
which can be labeled by the particle species and the corresponding particle energies. To
simplify the notations we restrict ourselves to theories containing only one particle type
with a given mass m. In 141 dimensions it is convenient to work with the rapidity variable
6;; the energy F; of the particle can be written as F; = m cosh 6;, while the momentum
is p; = msinh §;. Following the evolution of the multi-particle state in time to ¢ — —o0
the particles get far away form each other and from the boundary, therefore forming an in
state which is equivalent to a free multi-particle state and is denoted as'

|91,92,...,9n>m ; 91>92>"'>9n>0

Positivity of all incoming rapidities is a consequence of the assumption that the boundary
is at the right end of the half line and it is a major difference from the bulk situation. This
difference is essential because it influences the analyticity domain of matrix elements.

For t — +o0 all the scatterings and reflections are terminated, the particles are again
far away from each other and from the boundary forming the out state,

’

100,65, 0 Voue ;B <b,<---<6 <0

' Y'm
which is again equivalent to a free state. By the standard assumption of asymptotic
completeness, the two sets of states form a complete basis separately and are connected
by the reflection matrix, which is the boundary analogue of the S matrix. In an integrable
theory, due to the infinite number of conserved charges, there is no particle creation (n =

m), the set of rapidities changes only sign 6, = —6;, and the reflection matrix factorizes
into the product of pairwise bulk scatterings and individual reflections
101,02, .- On)in = [ [ S0 — 0,)S(0: + 0,) [[ RO — 01, =02, ..., 0o (1)
i<j i

where S(6; —60;) connects the two particle asymptotic in and out states in the bulk theory
(without the boundary)

'In general, particles in an interacting two dimensional quantum field theory have an effective fermionic
statistics with the sole exception of free bosonic theories, for which it is necessary to allow equality in the
ordering of the particle rapidities.



|91, 92>l?ulk = 5(91 — 92)|92, 91>bulk depicted as

mn out

01 02
It is defined originally for 8; > 65 but can be analytically continued for complex rapidity
parameters such that the extended function (denoted the same way) is meromorphic and
satisfies unitarity and crossing symmetry

SO)S(—0) =1 ,  S(ir —0) = S(0)

It might have poles on the imaginary axis at locations ¢/ = iu; with residue —iresy—s,;S(6) =
F?, some of which correspond to bound states.
The amplitude R(f) connects the one particle asymptotic states in the boundary theory

-0
|9>2n = R(9>| - ‘9>out depicted as

6

It can also be extended from the fundamental domain 6 > 0 to a meromorphic function
on the whole complex 6 plane satisfying unitarity and boundary crossing unitarity

ROR(—0)=1 ,  R(ir — 0)S(20) = R(6)

R(#) may have poles at imaginary locations 6 = iv; (0 < v; < m/2), some corresponding
to excited boundary states. If the interpolating field has a nontrivial vacuum expectation
value then generally there is also a pole at § = i7w /2 with residue

—i Res R(0) = g; (2)

_im
0= 2

The boundary form factor is defined as the matrix element of some local boundary
operator, O(t), between asymptotic states

’ /

out<91792,...,H;I\O(t)wl,@g,...,9n>m =
Fr(r?n(ella 9/27 . 9/ : 91, 92, ceey 9n>€—imt(z cosh6;—>" Coshéj)

Y m)

These form factors are defined only for 6; > 6y > ---> 6, >0and 0, <0, <--- <6, <O.
We can introduce other form factors as

! ! ! !

out (01,05, ... 0 O — 01, =0, ..., =0 our = FO (01,605, ...,0, =01, 0, ..., —0,)

m?

and consider them as a continuation of the original ones in the rapidities. Expressing these
form factors (via the boundary reduction formula [9]) in terms of correlation functions
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an analytic continuation can be performed for any (even) complex values of the rapidity
parameters. As a result the generalized form factors are meromorphic functions of the
rapidity parameters, and we shall assume that their poles always have physical origins
(maximal analyticity assumption). From the crossing formula

’ ’ ’ /

EQ (01,05, ... ,0,:01,05,....0,) =FS | (0y,...,0,:60, +ir,01,0s,...,0,) +disc (3)

Y m? ?Vm?

derived in Appendix A, we can express all the form factors in terms of the elementary form
factors

out<0|0(0)“917 ‘92, ey 9n>zn - F,?(Hl, ‘92, ey 911)

It is important to notice that the boundary form factors F©(6y,...,60,), in contrast to the
bulk case, do depend in general on all the rapidities 6;, not just on their differences, since
in the presence of a boundary Lorentz invariance is broken.

2.2 Axioms

In the Appendices we derive all the following properties of the matrix elements of local
boundary operators valid in any integrable boundary quantum field theory. Following the
general philosophy in the bulk case [3] we take them as axioms defining the local operators
via their matrix elements.

[. Permutation:

F,?(@l, e ,Qi,9i+1, . ,Hn) == 5(92 - 9i+1)FS(91, e 7‘9i+179i7 e ,Qn)

II. Reflection:

FO01,...,0,_1,0,) = R(0,)FC(0y,...,0,_1,—0,)




III. Crossing reflection:

FY (01,05, .., 0,) = R(im — 01)Fy (2im — 61,65, ..., 6,)

The singularity structure of the form factors is determined on physical grounds and can
be axiomatized as follows:
IV. Kinematical singularity

n

—i ie;ﬁ’,%(e +im,0,61,...,6,) = (1 o | ECECAN(ES ei)> FO(0,,...,6,)

i=1

or equivalently described as

~iRes P (~0 +im, 0,01, 0,) = <R<9> —

V. Boundary kinematical singularity

. o g - s

-iRes 0 = — F F




VI. Bulk dynamical singularity

—i E:e@s,F,ﬁz(@jLiu,H/ —iu,01,...,0,) =TFS (0,01,...,0,)

0
0+1u R f— ARl
—-iRes 9+ll@

8- 6-w
0 0

1en

VII. Boundary dynamical singularity

_Zt]g‘:{:%zs)Fr?-i-l(ela .- 'aenae) = gﬁo(eb s aen)

F
-i Res n+1 -

We note that equations similar to some of ours have been obtained earlier studying
boundary form factors in specific spin chains. Using a concrete realization for the Hilbert
space and the operators, these equations were extracted originally for the XXZ and XYZ
models in [T0] and extended for other spin chains in [IT]. By extending the bulk free field
representation for the boundary sine-Gordon model the analogues of XXZ equations were
obtained in |[T2]. In all these approaches, however, there is no analogue of the axiom V,
without which the equations do not determine completely the form factors as can be seen
on the example of the sinh-Gordon model. In contrast, in our approach the form factor
axioms are firmly established from first principles of local quantum field theory, thus they
are valid in a general setting. As a further result of our systematic approach the axioms
found form a complete system ready to be solved.

2.3 Consistency checks

Before proceeding to concrete examples we perform a few consistency checks of the axioms.
First we note that they are self-consistent in the sense that for specific rapidities the n + 2
particle form factor can be connected to the n particle form factor either by the kinematical
singularity equations or by using twice the boundary kinematical equations, and the two



procedures give the same result. Indeed taking double residue in the first case, first at
6 =6 and then at § = i gives

zReszResF o= 9+iﬂ,9/,91,---,9n) =

0 27\'
_ _” R @
( ZGR%SrR )(1 S 9 2+9)> Fn(91,...,9n)

Taking now the residue at § = 7 first then at 9 = 2 and using that S(0) = —1 gives

i Resi Res F© o= 0+im 0 ,61,...,0,) =

f=ir 9__
<1+HS——9 ) (1-1‘[5——9 )Ff(el,...,en)

2

The two different orders of taking the residues differ by a factor of 2 since in the first case
after taking the residue at 8 = 6 we get a factor f(20 — iw) which has a zero at 6 = i5
(due to S(0) = —1 the bulk minimal form factor vanishes at the threshold: f(0) = 0). In
the second case after taking the first residue a factor f(6 — i) appears. When expanding
around ¢ = i7 to take the second residue there appears a factor 2 due to the difference
in the arguments of this particular factor (all other terms are identical in the two cases).
Combining the crossing symmetry of the S-matrix with the definition of g () the two
expressions are easily seen to be equivalent.

It is worth emphasizing that in the boundary kinematical singularity axiom it is the
particle-boundary coupling constant g which appears although the residue of the reflection
factor determines only g?. There are known examples where in two physically different
situations the fundamental reflection amplitudes are the same and the two cases are dis-
tinguished only by the sign of g (e.g. the boundary Lee-Yang model with 1 boundary and
with ® boundary with a particular value of the boundary coupling [I3] — see in more details
in Sec. 3.3). Because of axiom V the solutions of the form factor axioms are different for
the two cases, as shown in detail in Sec. 3.3.

As a second test we relate the two disconnected physical domains (in/out) of the def-
inition of the form factor. By permuting successively each rapidity to the last position,
applying a reflection and permuting back to their original position we obtain that

F2(0r,....0,) =[] S(0: +0)) HR ) [[S06: = 0,)F(=61,...,—6,)

1<j 1<j

The product appearing is nothing but the multi-particle R-matrix, ({l), which connects the
in and out states.

Finally we use the fact that the reflection matrix can be considered as a special form
factor (of the identity operator Id) whose analytic properties are well known. By definition

FIUO +im, 0) = 00 (0'1d|0)in = R(0) g0 |Id| — 0) s = R(0)5(0 + )
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Now using the permutation property and tricks as above we have
Fi40 +im,0) = S(ir + 6 —0)FL46,6 +in) = S(ir + 6 — O)R(im +6)5(0 +6)

which, due to the boundary crossing unitarity, is equivalent to the previous expression.

2.4 General solution

In this section we describe the general procedure we use to obtain the solutions of the form
factor equations in the various specific models. In doing so we emphasize the similarities
and the differences between the boundary and bulk form factors and also separate the
(boundary) operator dependent parts from the ones that depend on the specific field theory
considered but are independent of the operators in question.

2.4.1 One particle form factors

In sharp contrast to the bulk case, in the boundary theory, the boundary operators in
general may have non trivial one particle form factors (1IPFF). Since the multi-particle
form factors are recursively determined, the 1PFF-s are very important inputs to these
recursions, and their determination is necessarily the first step. The equations for the
1PFF read:

Fi(0) = R(O)F,(—0) ; Fy(in +0) = R(—0)F, (iw — 0), (4)

where the reflection amplitude R(f) is analytic in the physical strip 0 < Sm(6) < 7/2
(apart from the presence of finitely many discrete poles on the imaginary axis), and from
general considerations using the reduction formulae we know that Fi(6) is analytic for
0 < Qm(f) < 7. Note that if F1(0) is a solution of () then F;(0)¥(6) is also a solution
provided

U(h) = v(-0), U(ir+6) =V(ir —0),
i.e. if ¥ is even and 2mi periodic. Therefore one can take W(6) = ¥ (y) with y = e’ + e~°.

To construct solutions to (Hl) we reduce them to a problem already solved in the bulk
form factor bootstrap. To this end we write F}(0) = ¢1(0)g2(im — 0) and suppose that

g1(0) = R(0)g:1(—=0) ; gi(im +0) = ga(im —0), (5)

which are nothing else but the bulk two particle form factor equations [14], where the
reflection amplitude, R(6), plays the role of the S-matrix. Furthermore, plugging this
product form Fj into (H) reveals, that g, must also solve (H). Thus a solution to (#l) can
be constructed as

Fy(0) = g(0)g(im — 0),

where ¢(#) is an appropriate solution of ().
To obtain a solution of (B) we use the following theorem [I5]. If the function h(6)
is meromorphic in the physical strip 0 < Sm(0) < 7w with possible poles at i, ..., iq
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and zeros at i1, ...,i0; and grows as at most a polynomial in exp(|d|) for |Re 8| — oo,
furthermore it satisfies

h(O) = M(O)h(—0);  M(0) = exp { /0 gt f () sinh (ﬁ) } . h(ir — 0) = h(in + 0);

(2

then it is uniquely defined up to normalization as

h(6) = szl sinh (%(9 — iﬁj)) sinh (%(9 + Zﬂj)) exp {/000 dF () sin? (ig;‘%) } |

sinh z

Since the reflection amplitudes are usually expressed as products of the blocks (x;)

sinh(§ +¢7&)

sinh(§ — 7))’

RO) = [[(@); ()=

)

to use this theorem we need the integral representation of one single block (z),:

©dtsinht(1 —x) . o
—(x) = 2 2 Yginh [ = .
(x) = exp { /0 ; — sin (Z ) }

Then, if R(#) consists of an even number of blocks, the minimal solution (with no zeroes
and poles) to eq.(Hl) can be written as

*© csinh ¢(1 — z; )
re.(0) :exp{Q/ @Zzsm' (2 %) <1—cosh£cosE (f—e))}
o t sinh” ¢ 2 T\ 2

If R(A) contains an extra minus sign, or is the product of an odd number of blocks,
R = —J](—(x;)), then the factor g(f) necessarily contains a zero at the origin which
is implemented by putting an extra sinh £ into it; thus in this case rg;, (6) = sinh 6 7%, (6).
In the following an important role is played by the appropriate modification of the minimal

1PFF denoted by r(0)

zeroes

7(0) = rmin(0) X bolos

where the last factor denotes an appropriate number of zeroes and poles at the right places
(usually the same as in R(0)).
Thus the general solution of eq.( ) can be written as

Fi(0) =r(0)Q:(y),  y=e"+e’

where the choice of Q1(y) is restricted by the analyticity and the possible asymptotics of
F. Tt is the Q1 (y) in the 1PFF that carries the dependence on the boundary operator O.
Note in particular that if Q;(y) corresponds to the operator O then Q(y) ~ yNQ1(y) with
N integer N > 1, describes the 1PFF of the operator O~ O.
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2.4.2 Two-particle form factors

The next step is to investigate the two-particle form factors (2PFF). The novel feature
compared to the 1PFF is that their equations contain also the bulk S-matrix. It is worth-
while to go through the analysis in some detail since it is straightforward to write down
the general form of the n-particle form factors once that of the 2PFF-s is obtained. The
equations for the 2PFF-s have the form

F2(91, ‘92) - 5(91 - HQ)FQ(GQ’ 91), (a) Fg(@l, 92) — R(HQ)FQ(Hl, —92) (b)
Fg(’iﬂ—f-el,eg) = R(—Hl)Fg(iﬂ—Ql,Hg). (C) (7)

Note that if F5(6;,6,) is a solution to these equations then so is Fy(6;, 02) H (61, 02) provided
H is a symmetric, even and 2¢7 periodic function.
To construct solutions to eq.([d) we write

Fy(61,02) = f(61 — 02)¥(61,02)
where f() is the minimal bulk two particle form factor [T4], i.e. the minimal solution of

f(0) =50)f(=0),  flim+0) = f(ir —0).

Plugging this F; into ([fa) reveals that U must be symmetric ¥ (6,,605) = W(0s,0;). The
most convenient way to satisfy ([b) is that W has the form

U (01,02) = f(0r + 02)r(01)r(02)P (01, 02)

where ® is symmetric and even ®(0;,6,) = ®(0;, —65). Finally this F; satisfies eq.(d) also
if ®(im — 01,05) = ®(im + 01, 6,). The conditions on ® can be satisfied simply by writing
(61, 05) = ¢(y1,y2) where ¢ is a symmetric function of the y;-s (y; = €% + 7%, i =1,2).
Thus the general form of the 2PFF, compatible with eq.(d) is

Fy(01,02) = r(01)7(02) f(01 — 02) f (01 + 02)(y1, Y2), oY1, y2) = ¢(ya, y1).

Different choices of the boundary operator O correspond to different functions ¢(y1,y2) in
this expression.

2.4.3 Multi-particle form factors
From the explicit form of the 2PFF it is clear that the general form of the multi-particle
form factors can be written in the following form:

n

Fo(61,05, - 0,) = Gn(01,6a, ..., 6,) [ [ r(0:) [ [ £(6: — 6,) £ (6: + 65), (8)

i= i<j

where f(6) is the minimal bulk two particle form factor. As a consequence of the form
factor equations G, is a 2w periodic, symmetric and even function of the rapidities: 6;,
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i.e. it is symmetric in the variable y; = 2cosh ;. When the bulk S-matrix is nontrivial,
the bulk kinematical singularity equations

n

—iRes Fyo(0 +im,0,01,...,6,) = (1= [[ S0 — 6:)S(0+6;)) Fo(61,....6,)  (9)
6'=0

i=1

give recursive relations linking G, to G, 12. (Note that these singularities are absent in the
two particle case). The advantage of using the y;-s becomes clear if one tries to describe
the bulk kinematical singularities: since y(im + 6) = —y(0), thus including a (symmetric)
factor y; + y; in the denominator automatically accounts for the pole. Therefore in the
following we put

_ Qn(yi 92 )
[ (y: + ;)

1<j

Gn(91792a - 7971)

(with @,, being a symmetric function of yy, ..., y,) and then eq.(@) give recursive relations
between the functions @,,. Clearly the actual form of these recursive relations varies from
model to model since they depend on the bulk S-matrix. The form of the recursions
depends also on the choice of the 1PFF r(0); it is useful to choose an r(6) which gives the
simplest possible recursion. Writing the 2PFF in the same form as the n-particle one

_ Qz(y1, 2/2)

oY1,y
(b1, 32) Y1+ Y2

then the absence of kinematical singularities requires Q2(y, —y) = 0.

If the bulk S-matrix is nontrivial and the reflection factor has a pole at %r then the
form factors with odd and even particle number are connected by the boundary kinematical
singularity equation:

T

: g - i
~iBes Fa(0+ 50,06 = 5 (1 Es(g —0))FO(6r, - 6,)

The corresponding pole in the n particle form factor can be included as

— Qn(yl,yz cee 7yn)
[Ty 1w +y5)

1<j

Gn(ela 92) SRR en)

and the boundary kinematical singularity equation relates @, to Q1.

The even and the odd particle form factors are also related if the bulk S-matrix has a
“self fusing” pole describing the 2 particle — 1 particle process, which parallels the bulk
situation (this happens e.g. in the Lee-Yang model). (In this case it is customary to include
this pole also in f(6)). Since the fusing angle in this process is necessarily 27/3, one finds
from bootstrap that in this case the dynamical singularities imply

~iRes Fla(6 + %,9 - %,91, o 0) =TFu1(0,601,....0,), (10)

12



where I'is related to the residue of the S-matrix at the self fusing pole: —ires,_2x: S(6) =12
An important restriction follows on the form factor functions from requiring a power
law bounded ultraviolet behaviour for the two point correlator of the boundary operators
(0]O(1)0O(0)]0): the growth of the function F,(6,...,0,) must be bounded by some ex-
ponential of the rapidity as § — oo (i.e. the form factors only grow polynomially with
particle energy). This can be shown using an argument identical to that in the bulk case
[16]. If  (0) and f (@) are specified in a way to include all poles induced by the dynamics
of the model, then it follows that the functions @),, must be polynomials of the y;. There-
fore in the following we only look for explicit polynomial solutions of the various recursion
equations. This is a posteriori confirmed since we find as many polynomial solution of the
boundary form factor equation as many independent local operator exist in the theories.

2.5 Two-point function

Once an appropriate solution of the form factor axioms is found it can be used to describe
correlators of boundary operators. The two-point function of the boundary operator O
can be computed by inserting a complete set of states

1
(2m)"

(Olomo)0) =

n=0

/ d01d0y . .. e T g (11)
01>02>--->0,>0

where time translation invariance was used and the form factors are
Fn - <O|O(O)‘91, ‘92, ey 9n>zn == F,?(Hl, ‘92, ey 911)

and
F+ == m<91,92, o 70n|0(0)‘0> = FT(LQ(’MT + Hn,’iﬂ + Hn_l, N ,’i?T + 91)

n

which, for unitary theories, is the complex conjugate of the previous one: F7 = EF*. In the
Euclidean (7 = it) version of the theories the form factor expansion of the correlator for
large separations converges rapidly since multi-particle terms are exponentially suppressed.
The identification between solutions of the form factor equations and operators of the
theory is a central issue. One possible way is to analyze the behaviour of the boundary
correlators for short distances. Although on general grounds one may expect the form factor
expansion to converge rapidly only in the infrared (large volume) regime, the examples from
the various bulk theories, where the form factor expansion converges even in the UV domain
(see e.g. [I7]), suggest that similar behaviour may happen in the boundary setting as well.
If the theory can be described as a relevant perturbation of a conformal field theory, then
in the UV domain the two-point function must follow a behaviour dictated by this limiting
theory. The short distance singularity exponent is related to the scaling dimension of the
operator O and can be calculated from the asymptotic growth of the form factors.
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3 Model studies

In this section we carry out a detailed investigation of the solutions of the form factor
equations in four different models. The first two models (the massive scalar field with
linear boundary interaction and the Ising model interacting with a boundary magnetic
field [B]) are free in the bulk and the correlation functions are known explicitly, thus the
form factors obtained from the explicit field theoretic solutions can be compared directly
to the solutions of the form factor equations. In both cases we find that the space of
appropriate polynomial solutions of the FF equations can be identified with the space of
local boundary operators obtained from the explicit construction. In the case of the Ising
model we also show how the conformal dimensions of the various operators of the ultraviolet
limiting BCFT can be obtained from the solutions of the FF equations. The third and
fourth models, namely the scaling Lee-Yang and the sinh-Gordon models with integrability
preserving boundaries are among the simplest boundary integrable theories. In contrast
to the previous cases they cannot be solved directly so one has to rely upon the solution
of the form factor equations. Since these models contain nontrivial bulk interactions the
recursion relations connecting the multi-particle form factors are no longer trivial, and in
these cases we investigate their solutions in detail.

3.1 Massive scalar with linear boundary interaction
3.1.1 Direct calculation

The free massive scalar field ®(z,t) restricted to the negative half-line x < 0 subject to
linear boundary condition

0, P(x,t)]2=0 = —A(P(0,1) — D). (12)
can be described by the following Lagrangian:

£=0(-2) (%(@@)2 Loy - %@2) 33 @ — @)

This one parameter family of linear boundary condition interpolates between Neumann
0, ®|z—0 = 0 (for A = 0) and Dirichlet ®|,—g = ¥ (for A — o0) boundary conditions.
Since for any A\ we are dealing with a free theory it can be solved explicitly. The mode
decomposition of the field is

< dk

D(a,t) = A"+ / e (R (0O (e R )

where A = m%r)\cbo and

14



is the reflection factor on the boundary at z = 0. The creation/annihilation operators are
normalized as

!

la(k),at (K] = 2rnw(k)o(k — k) , Kk, k >0

The boundary two-point function can be calculated easily

(010(0, 1)(0, £)[0) = A? + /0 h %e—ww—t’) (14 B(K) (1 + R(—K))

By comparing this expression to the form factor expansion of the two-point function ([T,
the form factor of the elementary field can be extracted:

(0]2(0,1)[0) = e®* (1 + R(k))
The same result can be obtained by taking the general (space-dependent) two point function
<0|T(q>(x,t)q>(x’,t’)) 0) = AZem(+e)

2 : , ’
+/ (d k ¢ e—iko(t—t) <e—zk1 -z _'_ R(k>e+ik1(m+$ ))

2m)2 k2 — m? + ie

and using the boundary reduction formula [9]

0]®(x,t)|0) = 2@/ da’ / dt " cos(p(f)z) {8?/ -0 +m2—|—5(1’,)8x,}
OIT (@(z, H@(2',1)) 10)
where w(f) = m cosh(f) and p(f) = msinh(6). Performing explicitly the calculation yields
(0]@(, 1)]0) = e (PO 4 R(G)e~PO) (13)
which for the form factor of the operator ®(z = 0,t) reads as

(01(0,)]6) = e (1 + R(9))

Introducing 7 = —it one also gets
(0]87®(0,0)]0) = w()" (1 + R(0)), n > 0.

Clearly these operators have no multi-particle matrix elements. It is important to realize
that 0,®(0,0) is not an independent operator since the boundary condition eq.(I2) relates
it to ®(0,0), thus the set of independent boundary operators having only one particle
matrix elements is given by 07®(0,0). To obtain multi-particle matrix elements one has

to consider
0] : P(z1,t1) ... P(ag, tr) : |01...0k).

15



Using the analogous boundary reduction formula and the Wick theorem we obtain

O : B(wr,tr) ... (g, ta) : |61 .. 0) = (14)
{e—iw(el)tl (eip(el)l‘l _I_ R(el)e—’ip(lgl)dfl)} . {e_iw(ek)tk (6ip(9k)l‘k; + R(ek)e—’lp(gk)l'k)} _I_ cy

where the ellipses at the end represent additional terms which make it completely sym-
metric in all coordinates. From this expression one can extract the form factor of the most
general boundary operator of the theory

where again a complete symmetrization in the 6; rapidities is understood. Checking the
leading asymptotic behaviour of these form factors gives that for all 6, ~ 6 large they
grow as e’V? where N = n; + - -- 4+ ny, is the total number of derivatives in the expression.
We note that we have as many operators for a given N as many partition /N has into the
numbers 1,2, ..., k. This can be seen by writing N = Ny +2Ny+- - -+ kNj and associating
to it the operator with ny = Ny + Ny - -4+ N, ng = No+-- -+ Ni ... np = Ni derivatives.

The Dirichlet boundary condition (R = —1) can be obtained in the A — oo limit.
Clearly ®|,—o = ®g is a c-number and the Dirichlet boundary condition does not connect
the operator 0,P|,—o to ®|,—9. We can extract, however, the form factors of the operator
0,®(0,t) from that of ®(0,¢) by taking the A — oo limit carefully in ([3):

(00:-®(0,1)|6) = e~ 2ip(0)
and for its derivatives
(0|00, ®(0,0)]0) = w(0)"2ip(d), n > 0.
This can be extended similarly to the most general operator as
(0] : 0710, 9(0,0)...07%0,P(0,0) : |61 ...0k) = w(601)"2ip(0y) ... w(0k) " 2ip(Ok) + . ..

where again a complete symmetrization in the 6; rapidities is understood. Checking the
leading asymptotic behaviour of these form factors gives that for all 8; ~ 6 large they grow
as eV where N = k +n; + - -+ ny is the total number of derivatives in the expression.
3.1.2 Solving the form factor equations
The bulk S-matrix of the theory together with the reflection factor are
sinh @ —i2 B B A B
S@)=1, RH)=——L=—-|1+—=—)(—= ), — =sin—
(6) (6) sinh 6 + 2 ( 2)( 2)

where the block notation (@) is used to express R(#). As a consequence of S = 1 the
minimal bulk form factor is trivial: f(#) = 1. To determine the 1PFF we note that this
reflection factor is identical to the two particle S-matrix of the sinh-Gordon model if the
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above identification of parameters is done. Therefore eq.(H) in this case is identical to the
equation for the minimal bulk form factor of the sinh-Gordon model. Choosing for g(f)
the solution given in [T4] (described in detail in the sinh-Gordon section) gives

2sinh 6

r(0) =2g(0)g(imr — 0) = SnhoLiE 1+ R(9)

Clearly this corresponds to the form factor of the operator ®(0,0) — A.

Now we demonstrate that the number of independent solutions of the form factor
equations coincides with the number of local boundary operators. In this case the general
Ansatz (§) takes the following form

Fo(0,....00) = Puyr, . un) [ r(62)

i

where y; = 2 cosh 6; as before. Since the bulk S-matrix is trivial there are no bulk /boundary
kinematical singularities and P, is a completely symmetric polynomial in the y;-s. One can
count the independent solutions of the BFF equations by counting the possible solutions
for P,. If P, has degree N then the solutions are given by the partitions of NV into the
numbers 1,2, ...n in the following way. Since the completely symmetric polynomials of n
variable are generated by the o;-s (elementary symmetric polynomials of degree i) one can

write:
n

n
H(x + ;) = Zai " Pyocotol .ok N = ZZ]%
i=1 i=1
It is clear that this space has the same dimension as the space of boundary operators
having only n particle matrix elements with asymptotic growth e™? .

The Dirichlet (A — oo) limit for the operator 9,9(0,0) can be obtained using its
relation to ®(0,0) via the boundary condition () as we did in the Lagrangian framework.

3.2 Ising model with boundary magnetic field
3.2.1 Direct calculation

The Ising model with a boundary magnetic field can be described by a free massive Majo-
rana fermion perturbed at the boundary [5]. In Minkowskian formalism the Dirac equation
can be obtained form the Lagrangian:

1-
L= 5\11(2'7“8” —m)W¥

The gamma matrices are chosen as
0 —i 0 —
0 _ . 1 _
(V7)) =50
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in order for the Dirac equation to be real:

—m 0x+8t .
(ax—at —m )‘I’—O

Thus the Majorana condition corresponds to taking W real. Using the component notation

= ()

the Lagrangian of the boundary field theory takes the form

L= —i0(-a) (ém@ 0 — -0+ ) - mw_) () Us

where

1 1 1
Up = §¢+1/1— + §aa + éha(% + 1)

The operator a is a boundary fermion a? = 1, which implements the boundary condition

Oty —¥) = e + )

Since the theory is free we can solve it explicitly. The mode expansion of the fermionic
fields are

vty = [ d‘){bw)e—ww(uiw)eik@x+R<e>ui(—e)e—ik<e>x)

2
+b+(9)eiw(9)t (U:I: (9)6—ik(9)x + R(_Q)Ui(_e)eik(ﬁ)x) }

where uy () = vi(0) = VmeT " are the spinor amplitudes, R(6) is nothing else but the
one-particle reflection factor

, im0\ sinhf + ik h?
R(H)—ztanh(z—i)m  k=1-——

and the creation/annihilation operators are normalized as
{b(6). 6 (6)} = 2m5(9 — )

The boundary two point function can be calculated explicitly:

0160, 000.6)/0) = [ 520D (us(9) + R(O)us(-6) (0-(6) + R(-0)v-(-0)
(19
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which, as compared to the form factor expansion ([[Il), gives
(0[¢(0,8)[0) = e (ur(6) + R(0)u(—0)) (16)

These two operators are not independent since they are related by the boundary condition
and so there is only one boundary fermion field, say ©.. As a result, the algebraically
independent operators at the boundary are the fermion field and its derivatives 0.
Note that 0,%|.—o is not an independent field, as it is determined by the Dirac equation
in terms of 0,1y |,—¢ and ¥_|,—o. As a consequence of the fermionic nature of the field
the most general boundary operator has the form 9y 0v, ... 0", where ny > ng >

- > ny (the inequalities are strict, in contrast to the bosonic case discussed earlier).
N =ny +ng + -+ + nyg is called the level of the operator, and operators at level N can
be brought in one-to-one correspondence with partitions of N into the numbers 1,2, ... k.
For a partition

N:k?Nk+(k?—1)Nk_1+"'+2N2—I—N1

we associate the operator above with ny = Np; ng_1 = N + Ng_1;...5np = Ny + N1 +
e Nl-

(Had we included also the operator a we would have had to perform a GSO type pro-
jection, leaving only non-fermionic operators. This would amount to keeping all operators
with an even number of fermion factors plus all odd ones multiplied with a factor a, but
this would lead to the same number of operators.)

3.2.2 Solution of the FF bootstrap

Using again the block notation (@) the S-matrix of the theory and the reflection factor are

Fi
s0)=-1 . RO=E(-3) . E=-@0-2)

where z is related to the boundary magnetic field as

h2
sinmrr =1— — =&k
2m

For h = 0 we recover the free boundary condition with

i) = (5

which has a pole at 75 corresponding to the fact that the ground state is doubly degenerate.
In contrast to the generic situation the pole at ¢3 is a dynamical pole and not a kinematical
one (since the field has no vacuum expectation value at all). The h — oo limit corresponds
to the fixed boundary condition (when the Ising spin takes a fixed value at the boundary),

and the reflection factor is )
aal®) = (=3
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which has no pole in the physical strip at all. The minimal one particle form factor for the
fixed case can be calculated directly using the recipe in Section 2

sinh 6

Tfixed (9 ) W

For the free case we include the dynamical singularity into the 1PFF

sinh 6 0 s
Ttree(0) = —2i p— sinh ( + ZZ)

The simplest solution which interpolates between these two cases and has a pole exactly
at the location of the boundary dynamical singularity of the reflection factor is

sinhf®  coshf +i(1 -k
rl) = ——F E —r) (17)
sinh(5 +i%)  sinh6 —ix

This expression is the same we obtained from the exact solution of the model ([[B). The
minimal bulk two particle form factor is simply

0
f(6) = sinh —.
2
Since R(#) has no kinematical pole at i5, boundary kinematical singularities are absent,
and since the bulk S-matrix is —1 there are no bulk kinematical singularities either. Thus
we look for the n particle form factors in the form ()

o0y, ... 00) = Pa(yr, - - yn) HT )Hf(9i—9j)f(9i+9j),

1<j

where y; = 2 cosh ; and P, is a completely symmetric polynomial in the y;-s. Taking into
account the special form of f(6) the form factor simplifies to

Fo(by,...,0,) = yl,...,ynHr ) [ [ — i) (18)

1<j

The independent solutions are counted in the same way as in the bosonic case, i.e. by the
partitions of N into the numbers 1,2,...,n and are generated by the o;-s. It is clear that
the dimension of the space they span is the same as the one of the boundary operators
obtained from the direct calculation.

Since the UV limit of this theory is a boundary conformal field theory one can go
further than in the bosonic case and calculate the UV dimension of the various boundary
operators. As the form factor equations are not coupled we can choose a basis among
operators consisting of those having matrix elements only with a certain fixed number of
particles.

20



If the operator has only one-particle matrix element then its correlator is
> do @] 2 _—mcosh 6t
(0]O(7)0(0)[0) = i 5 T (0) e (19)

where FP(0) = r(0)P,(y). Plugging (I7) into ([J) we obtain the exact correlator ([H). If
the operator O goes to a scaling operator in the UV limit (7 — 0) then the exact correlator
has the short distance asymptotics 7722, where A is the appropriate scaling dimension in
the ultraviolet BCFT. In ([d) the singularity comes from the large 6 asymptotics of the
form factor. If |F{?()|* diverges as y™ here, then the corresponding weight is A = 2.
Taking the simplest solution Pi(y) = 1 the weight is A = § which corresponds to the
boundary fermion field. Choosing P;(y) = o (y) corresponds to the n-th derivative of this
operator which has weight n + %

Similarly we can analyze an operator having n-particle matrix element only. The cor-
responding correlator is

*° db, < do, 1
0|0 (1)Omy(0)]0) = — ... —L|FO(B,,...,0,)| e mcoshOittcoshbn)r
010 (OO0} = [~ G2 [~ FELIRO 6, )
The operator which has the mildest UV behaviour corresponds to P, = 1. The correspond-
ing form factor square for large 6-s behaves as

FO (01, 0)]  exp(6(n + n(n — 1)) = e,

thus the UV dimension of O, is A = "72 The explicit boundary operator which has

nonzero matrix elements only with n particle states and has the mildest UV behaviour is

¢+5r¢+ s -82_1?%
with dimension A = ¢ + @; therefore it can be associated to O).

To match the descendent operators, note that to any partition of N = k1+2ks+- - -+n-k,
there exists a solution of the form factor equations with PY = o¥' .. g, The number
of such polynomials is the same as the number of descendants of O, at level N: to the

given partition we can associate the operator
k 1+kn—1+kn n—1+ki+-+kny
a‘rnw-i-ar L,QZ)-F s a7' L¢+
Conversely, given an operator of the form

Opy .y, 0<pi<py--<pn

of weight N + "72, one can define a partition as k, = py, k,_1 = p2 — k, — 1, ... and thus
associate a polynomial solution of the form factor equations with appropriate asymptotic
behaviour. It is important to emphasize that we do not claim that the form factor related
to PN belongs to the operator above, what we have shown is only that the dimension of
the space of operators with certain scaling dimension is the same as the dimension of the
solution of the form factor equations.
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3.3 The boundary scaling Lee-Yang model

The scaling Lee-Yang model with boundary is a combined bulk and boundary perturbation
of the boundary version of the M(2/5) minimal model [, I8]. In the bulk the perturbation
is given by the unique relevant spinless field ¢, at the boundary the perturbation depends
on which of the two possible conformal boundary conditions is present in the unperturbed
model. One, denoted by 1 in [I8], does not have any relevant boundary fields - thus can
have no boundary perturbation either -, while the other, denoted ® in [I8], has a single
relevant boundary field ¢ with scaling dimension —1/5. In this latter case the general
perturbed action is

) 0 fe'e)
Ao = Ap + A / dy / dad(z,y) + h / dyo(y).

where Ag denotes the action for M(2/5) with the ® boundary condition imposed at x = 0,
and A and h denote the bulk and boundary couplings respectively. The action of A, is
similar, but the last term on the right hand side is missing. If A > 0 then in all cases the
bulk behaviour is described by an integrable massive theory having only a single particle
type with the following S matrix [19]:

wo=-(3)()--[ - v-SeH

The pole at 6 = % corresponds to the “¢3 property”, i.e. the particle appears as a bound

state of itself. The minimal bulk two particle form factor which has only a zero at § = 0

and a pole at § = 2% in the strip 0 < Sm(f#) < 7 has the form [I7]:

'U(e) = exp 9 /00 @62% sinh % S‘inh2§ sinh é .
o 1 sinh” ¢

In the boundary theory with the perturbed ® boundary, the reflection amplitude of the
particle depends on the strength of the coupling constant of the boundary field as [T8]

o= manmo= () (2) ()]

where the dimensionless parameter b is related to the dimensionful A as

where

1 3 4_1 in 2° NE ;
h(b) = sin ((b+ §>g) MO i, hopi = —3 2851 23 (F(é)) >
PN A6
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and m(\) is the mass of the particle giving the overall scale in the infrared description. In
the case of the 1 boundary the reflection amplitude is the parameter independent expression

- () ()

Note that R(#); is identical to R(0)s at b = 0 and so both have a pole at 6 = i7/2 coming
from the (3) block but their g factors differ in a sign [T3].

3.3.1 Lee-Yang model with perturbed ¢ boundary

We consider first the Lee-Yang model with perturbed ® boundary. The 1PFF correspond-
ing to R()e is chosen as

¢sinh 0
r(0) = u(0),
©) (sinh9—isin@)(sinb@—ism@) ©)

where

dt | 1 t im t] sinh 2 + sinh £ — sinh £
= — — 92cosh — T2 6 2 EA N
u(f) = exp {/0 r [sinh% cosh 5 cos [( 5 9) W} D ] }

Note that r ~ 1 at y — oo, and r(0) satisfies the (6 + i) = r(0)* reality condition for
real . The general n-particle form factors have the form

(0; —6,)f(6; + 6,
FolOrse e 0) = HoQulonse ) [ L BIOL0) oy

where we separated a normalizing factor H,, from the polynomials ),,. The various F,-s
are related to each other by both the kinematical and the dynamical singularity equations,
since the S-matrix is nontrivial and also has a ©? pole with I = i22371. In addition, these
F,.-s also have to satisfy the equation coming from the residue of the pole at 6 = im/2:

—i Res Fur(0,61,...,0,) =2 (1—1‘[5 ) (01, 0,). (21)

0=im/2

Our strategy is to solve the recursion equations coming from the first two conditions first
and check whether the solutions also satisty the third requirement (£II). By choosing the
normalizing factors H,, and introducing the useful quantities 5

H,=N (2;?0)) Br(b) :2cosg(b+k), ke, (22)

the overall normalization N drops out and the recursion equations coming from the dy-
namical (resp. kinematical) singularities read

Q2(y+,y-) = (y° — %5)Q1(y),

Qn2Wa U=yt Un) = Quin(W,yn,-oum) 07 = B2) [[(w+w), n>0; (23)
=1
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Qn+2(_y7 Y, Y1, - - -, yn> = Qn(yh oo 7yn) (y2 - /831)(y2 - 512) PTL’ (24)

where
1 n n
Po=o—— ]| —y-)(vi + 1) yi +y- )i —ye) | (25)
2(y+ —y-) le g !
and
yp=wr+wlz™h oy =wlrtwr ™ =€) w=é5, y=a4+azt (26)

Next we present the minimal solution of these recursion equations up to n = 3. The
solution is called minimal, if the leading overall degrees of the F},-s in all of the y variables
are the smallest possible ones. Of course the solution also depends on the input function
@1(y1). Since Fy can have no pole at § = i7/2 while r(0)/y has one, Q; must be chosen to
cancel this pole; the choice with the minimal degree is Q1 (y1) = y1 = 01(y1). Using this as
input, we find from (23 24)) the unique solution

Q1(y1) = o1, Q2(y1,12) = 01(02 + 3 — 523),
Qs(y1,y2,ys) = o1 [o1(02 + 521) (02 + B7) — (02 4 3) (0102 — 03) ] . (27)

The remarkable property of this solution is that it contains no free parameters. A simple
counting of the various powers shows that the leading overall degree of Fy, F3, and Fj
vanish.

To check eq.([2I)) we need the following relations following from the explicit solution
D) and from the various identities among the [j-s:

Q2(0,52) = o1(y2)(3 = B2y),
Q3(0,y2,y3) = BiB-101(y2,y3)Q2(y2,y3) = (3 — 533)01(y2,y3)Q2(y2,y3)-

Indeed using them in eq.(2I]) leads to a consistency condition on the ratio of the H,-s:

e ('5)(3 3%,) = —2iV3gs, n=1,2.

H,
Since tui2) V348
riﬁ e an o =1 Vg — 1/2 3+ O
(i5) = Az gy ™4 e =@V

the b dependence cancels from the consistency condition and using the actual form of the
H,,-s leads to
u(i%)

V2v(0)

which we checked numerically up to 7 digits.

= \/3(2 - \/5)1/27
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To test these form factors numerically against the predictions of conformal field theory,
we take the spectral representation of the boundary two-point function

OOWOO0) = 3 [ TR0 ) E b e S
0

nl(2m)m "

= Y ([ SR, mt iy coshd,
( ) /0 n'(27r)” | n (917 aen)| e

which we truncate to the first few terms in the boundary form factor expansion. Since the
minimal solution of the form factor problem has the mildest UV behaviour it is natural to
assume, that in the UV it corresponds to the boundary field ¢. Therefore (0|O(¢)O(0)]0)
obtained from the FF expansion must be compared to the short distance expansion:

(Olmsp(t)m® p(0)|0) = —(mi)? + (mt)> CZ,(ms) + ..

where appropriate powers of m were inserted to make the expression dimensionless and

the fusion coefficient is
o J1rvE TG
i 2 INCHINES

while the (b-dependent, dimensionless) vacuum expectation value

| 5 cos (™)

_ 6
(0 = G cos(Z 20+ 1))

is given explicitly in [I8]. In analogy with the bulk case [7] we choose the normalization
factor N in (Z2) as the vacuum expectation value of the boundary field

N = (m3¢) (28)

With this choice the boundary form factor expansion gives

OOde —mt COs
e e

d91d92 o) 2 —mt ho
90, 60 mt(cosh 61+cosh 62)

B /oo d961(6292)6i’93 |F§9(91, 92’ 93)|2e—mt(cosh 01+cosh 2+cosh 63) + ...
0 T

The two expansions are compared on the next figure
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where b = —1.05 and the dimensionless correlation function is plotted against m¢. The
predicted UV behaviour is given by the continuous line and the numerically determined
form factor expansion truncated at 1, 2 and 3 particle intermediate states is denoted by
the symbols [1, x and o, respectively.

We checked that the agreement between the form factor expansion truncated at three
particles and the UV CFT prediction holds for various values of the parameter b: indeed
as we change b the two curves move together. The agreement above also confirms our
choice (28) for the normalization of the form factors. Based on all these we associate the
boundary operator corresponding to the minimal solution of the form factor axioms to the
one, that in the UV limit becomes the ¢ field of the boundary Lee-Yang model.

3.3.2 Lee-Yang model with the 1 boundary

The 1PFF corresponding to the parameter free R(6); is chosen as
r1(6) = isinh 6 u(0),

where u(0) is the same as in the previous subsection. Note that r; also satisfies ry (0 +im) =
r1(6)* but its asymptotic behaviour r; ~ y* at y — oo is different from that of the r in the
previous case. Since R(f); also has a pole at § = im/2 we introduce a similar Ansatz as in

(2i0)

f(0; +46;
B0 oe00) = HiQun o) [ LA BIOE0) )
7 1<j Yi yj
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with H! = 4"H,, where H, is the same as in (Z2). Then one finds the following recursion
equations for the @),-s from the dynamical (resp. kinematical) singularity equations:

Q2(y+,y-) = Quly),

Qn+2(y+ay—>yl>"'ayn) = Qn—l—l(?/,?/l,---,?/n) H(y+yl)> n> Oa (30)

=1

Qn+2(_yayay1>"'ayn) :Qn(yla>yn) Pna (31)

where the various symbols are the same as in eq.(2324). Up to n = 4 the unique minimal
solution of these recursion equations with the input Q;(y;) = oy is

Ql(?ﬂ) = 01, Q2(y17y2) ~ 01, Q3(y172/272/3) ~ 0’%7 Q4(2/17y272/372/4) ~ 03(0'2 + 3)-

It is easy to show that the leading overall degree of the first four form factors Fi, ..., Fy is
two. This indicates that the operator that corresponds to this set is different from the one
encountered in the case of the perturbed ® boundary. Therefore in the conformal limit this
operator is different from the ¢ field and this is in accord with the fact that only the identity
operator and its descendents can live on the conformal boundary condition 1. Based on
the asymptotics of the form factors for large 6 the corresponding operator has ultraviolet
dimension 2 and can be identified with the unique such operator in the conformal vacuum
module which is the L_5 descendent of the identity. This identification is further confirmed
by comparing the numerically obtained truncated form factor expansion to the conformal
two-point function.

Since
T

7”1(@'5) = —u(ig), and ¢, = —z'2(3)1/4(2 _ \/§)1/27

(see also [I3]) one can readily show that these four form factors also satisfy the equation
coming from the residue of the pole at 6 = im/2.

3.4 The boundary sinh-Gordon model
The sinh-Gordon theory in the bulk is defined by the Lagrangian?:

2

1 m
L= 5(8MCI>)2 - ﬁ(cosh bd — 1)

It can be considered as the analytic continuation of the sine-Gordon model for imaginary
coupling # = ib. The S-matrix of the model is

s0--(1+3)(-3)=-[3] o5

2Note that the parameter b is used here with a different meaning compared to the former case of the
boundary Lee-Yang model.
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The minimal bulk two particle form factor belonging to this S-matrix is [I4]

Y

27 sinh?

) (x(z'w — e)) sinh 22 sinh(1 — £)% sinh £
x

f(0) = Nexp [8/000d—xsin

and it satisfies )
sinh 6

sinh @ + 7 sin %

f(0)f(0 +im) =

(32)

The sinh-Gordon theory can be restricted to the negative half-line, but the integrability is
maintained only by imposing either the Dirichlet

®(0,t) = Y

or the two parameter family of perturbed Neumann
b
Ve(®(0,t)) = My cosh <§(<I>(0, t) — <I>0)> — M,

boundary conditions. The latter interpolates between the Neumann and the Dirichlet
boundary conditions, since for My = 0 we recover the Neumann, while for My, — oo the
Dirichlet boundary condition with ®2 = ®,. The reflection factor which depends on two
continuous parameters can be written as

R(0) = Ro(O)R(E, F,0) = G) <%+§> (_1_ g) {Ez—l} {F;}

in terms of the parameterization used in [20]. They are related to the parameters of the
Lagrangian as

E F M, b
cos E(b2 + 87) cos E(b2 +8m) = Mc:«]it cosh 20

E F M, bd
sin 1—6(62 + 8) sin E(b2 +87r) =-— Mcfz’t sinh 70

where M. = m, /WQ@Z/&' Note that for generic values of the parameters (E # 0,

F #0) this reflection factor has a pole at § = im/2 coming from the (3) factor. Imposing

Dirichlet boundary condition instead of the general one corresponds to removing the F
dependent factor from R(6). Then the remaining parameter E is related to the &5 boundary
value of the sinh-Gordon field as E = i8b®,/(b* + 87).

3.4.1 Sinh-Gordon model with ®; = 0 Dirichlet b.c.

This case is interesting because F = 0 implies that the pole at § = in/2 is absent in this
case. Therefore the equation coming from the residue of this pole is also absent and the
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form factors are less restricted. The 1PFF corresponding to the reflection amplitude on
the £/ = 0 Dirichlet boundary is

sinh 0

ro(f) = sinh @ + ¢ u(, B),

where

o h2 B B .z
u(f, B) = exp [—2/0 ci_x [c (? — 9); — } Scl(ljlsh2?L’ (sth + sinh(1 — 5)2 + sinh )} :

Note that rg ~ y at y — oo and has no pole at § = iw/2. At B = 0 - which corresponds to
a free theory - u(6,0) can be integrated explicitly yielding ro(6)|p=0 = (—isinh)/2; and
this, apart from a trivial normalizational phase coincides with the 1PFF for a free scalar
with Dirichlet b.c. (As discussed in Section 3.1.1 in this case 9,P(0,0) is the operator
having one particle matrix element only).

We write the n particle form factors in the general form:

(0; —6,)f(6; + 6,
Fn(ﬁl,..., ) HQn Yis- -5 Yn HTO Hf + ]).
1<j Yi yj

Since there is no self fusing pole in the S matrix of the sinh-Gordon model, the F,-s
are related only by the kinematical singularity equations. Choosing the ratio of the H,-s
appropriately the recursion equations originating from here take the form:

Qn+2(_y> Y, Yty - >yn) = _Qn(yb cee ayn) Pna

where P, is given by eq.(Z3P0) with w = ™3

As 7o has no pole at § = im/2 , one can have a minimal solution of this recursion
equations starting with ¢); = 1 which has non vanishing form factors for odd particle
numbers. We calculated up to n =5 and found that the solution is uniquely given by

Ql(?h) =1, Qg(yl,y2,y3) = —01,

Q5(’y1, . ,’y5) = 0'1[0'30'2 — ((A) + (A)_1>20'5 + (w — w_1)40'1 — ((A) — w_1)2(03 + 0'10'2)],
with all the Fi, F3 and Fj form factors having leading overall degree one. There is a unique
local operator with this property, namely 0, ®.

Of course one can also find non vanishing solutions with even particle numbers also
starting with a non trivial ()o. Since F5 can have no kinematical singularity, the minimal
choice is Q2(y1,y2) = o1. With this input we obtained again a unique solution

Q2(y1,1y2) = o1, Qu(yr, -+ ys) = U%(U2 —(w— w_1)2)7

where both the F, and the F; have leading overall degree two.

For &y =0 (E = 0) the ® — —® reflection symmetry of the bulk sinh-Gordon model
survives also in the boundary theory. Therefore the boundary operators can be classified as
even or odd ones, having only non-vanishing even or odd particle form factors, respectively.
Thus the second form factor family can be identified with the operator (9,®).
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3.4.2 Sinh-Gordon model with &, # 0 Dirichlet b.c.

For &y # 0 (E # 0) the reflection factor acquires a pole at 6 = in/2 due to the fact that
the field has a nontrivial vacuum configuration. At the same time the reflection symmetry
of the bulk sinh-Gordon model is violated in the boundary theory. Therefore the boundary
operators cannot be classified into representations of this symmetry, and the equation
coming from the residue of the pole at 6 = im/2 connects the form factors with even and
odd particle numbers. Note that now this equation plays an essential role as it is the only
one that relates these two sets of form factors to each other.
The 1PFF corresponding to the reflection amplitude on the E # 0 Dirichlet boundary
is
sinh 6

s
sinh@—isinvu(e’B) ’ v=5E-1),

2

where u(0, B) is the same as in the previous case. Note that g ~ y at y — oo.
Writing the n particle form factors in the general form

Hf9—9 9+9j)
Yi +Y;

TE(H) =

Eo(0y,....0,) = HyQu(v1, .-, Un H

1<j

and choosing the ratio of the H,-s appropriately the recursion equations originating from
the kinematical singularity equation take the form:

Qn-l—?(_ya Y, Yty - >yn) = (y2 - 4COS2 V)Qn(yla s >yn) Pna (33)

where P, is given by eq.(23E6) with w = ™3 . Next we show how the equation coming
from the residue of the pole at 6 = im/2:

0=im/2

—i Res n+1(9791a"'a9 gE (1_HS ) (91"" 0 )7 (34)

helps to eliminate the arbitrariness in the minimal solution of the recursion equations.
Q1(y1) = oy is the minimal choice that guarantees that F} has no pole at 0 = in/2.
Using this in the recursion equation (B3)) gives that the most general ()3 has the form:

Q3(y1, Y2, y3) = —07(02 + 4 cos®y) + (A + Boy)(o102 — 03),

where A and B are arbitrary constants. Eq.(B4)) leads to the following relation between Q3
and Qa:

T . Bm
H37’E(Z§)Q3(0, Y2, Y3) = gE2sin 7H201(y2, Y3)Q2(y2, Y3).

Since
Q@3(0,12,y3) = 01 {—01(02 +4cos®y) + (A+ Bal)ag} ,

the expression in the curly bracket should be proportional to (). This observation fixes the
values of A and B: (), has to be proportional to ¢; to guarantee that F, has no kinematical
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singularity and this requirement is met only if A = 0, while F5» has a leading degree not
exceeding that of F; and F3 if B = 1. Thus with these two requirements one obtains a
parameter free solution starting with )1 = o1; up to n = 4 it has the form:

Q2(y17y2) ~ —4 cos® 701, Q3(Z/1;y2ay3) = —0103 — 4 cos® WU%a

)
Qu(y1, ..., ys) ~ —4cos® (o103 + 4 cos® yoi)(oy + 4sin? 7)

Note that both @2 and @4 vanish for v = —7/2 (E = 0). Furthermore for £ = 0 one also
has Q1/y1 = 1, and Q3/(y1y2y3) = —o1, thus the solution goes over smoothly into the one
with £ = 0. Since

o 1 2(1 4 cos 8 4+ sin Z8)  cos~y

re(i) and  gp = —,
/sin% 1 —sinvy

2
the 7 dependence cancels from the ratios of Hs3/H, and Hy/Hs when we use eq.(B4) for
n=1,2,3

1 —siny’

—ZE:—ZE: 1+COST+SiHT 481117.
In the b — 0 limit these ratios vanish, therefore the higher form factors decouple in accord

with the fact that the kinematical singularity axiom becomes trivial for the free field theory.

H, Hj ( B 7rB)2 B

4 Conclusion

In this paper we treated the form factor bootstrap for boundary operators in integrable
boundary quantum field theory. Although there have been earlier treatment of form factors
for specific (mainly lattice) models [I0, [IT), T2], none of these has actually given a complete
formulation similar to the axiomatic approach by Smirnov for the bulk case [3]. The present
work initiates an extension of this axiomatic program to boundary fields.

We have given a complete axiomatization of the properties of boundary form factors,
derived from first principles of quantum field theory (unitarity and the boundary extension
of the LSZ reduction formulae). In particular, the axiom describing boundary kinematic
singularities is an entirely new result of this paper, as this has never been treated before
in any previous study. We have shown that these axioms are consistent with many known
aspects of integrable boundary field theory. In particular, the relation between the residue
of the reflection factor at iw/2 and the one-particle contribution to the boundary state,
noted previously in the context of finite size effects, was confirmed once more as a necessary
condition for the consistency between the boundary and the bulk kinematical axiom (the
only exception to this relation is when the bulk is free, but then the two axioms are trivial).
Therefore it seems that this particular relation is a consequence of integrability and the
existence of a nontrivial bulk scattering matrix.

We then proceeded to give a systematic method to solve the boundary form factor
axioms for the case of diagonal scattering. The solution is a natural generalization of the
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bulk case, but necessitates the introduction of a minimal boundary form factor function in
addition to the already known minimal bulk form factor. The periodicity, permutation and
reflection axioms can then be solved by a general Ansatz, and the residue axioms can be
recast as recursion relations for certain polynomial functions which characterize the form
factor solution completely.

In particular, we treated the case of the free boson and the free fermion (noncritical
Ising model with boundary magnetic field), where the polynomial solutions of the form
factor axioms were shown to be identical to the explicit solutions obtained from the field
theory, and it was also shown that the polynomial solutions of the form factor bootstrap
match the full boundary operator content expected from the Lagrangian approach.

As example for the interacting case, we first treated the Lee-Yang model, where the
boundary kinematical singularity axiom makes its first appearance, and it is very important
in order to distinguish between boundary conditions that have different conformal limits.
We have also computed the spectral expansion of the two-point correlation function for the
operator with the lowest conformal dimension and have shown that it matches perfectly
with the ultraviolet expansion of the same correlation function obtained from boundary
conformal field theory.

Our second interacting example is the sinh-Gordon model, with Dirichlet boundary
condition (an extension to the general case is in principle straightforward, but we decided
to treat only the Dirichlet case to keep it short and simple). The boundary conditions with
zero and with nonzero value of the field on the boundary are differentiated again by the
boundary kinematical axiom, and we have shown that the results of the boundary form
factor bootstrap fit perfectly well with expectations from the Lagrangian approach.

An open question is to find and classify non-minimal solutions of the form factor equa-
tions and interpret them in terms of the local boundary operator algebra of the underlying
field theory, extending the method presented for the bulk sinh-Gordon model in [2T]. In
particular it is interesting to find out whether the counting of operators in the conformal
limit can be matched with the full set of solutions in the interacting case.

It is obvious that the results presented in this paper can be applied directly to any
integrable boundary quantum field theory for which the factorized scattering theory is
known, and that they formulate a well-defined program to determine form factors and
correlation functions of boundary operators, similar to the approach used in the bulk case.
We have also shown how to solve the axioms for theories with diagonal bulk and boundary
scattering.

It is an interesting problem to extend these results to the case of nondiagonal scattering
(with boundary sine-Gordon theory as the most prominent example). The extension of the
axioms is straightforward: they must be decorated by multiplet indices, just like in the
bulk case, although here we avoided to give this extension explicitly to keep the exposition
simple. However, solving them will probably encounter much more difficulties, and just as
in the bulk, new methods must be devised for the task, like the boundary extension of the
Lukyanov free field representation in [I2].

The comparison to the Lagrangian and perturbed conformal field theory description
would be greatly facilitated by establishing sum rules for the spectral representation of
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the boundary correlators, similar to the c-theorem [22] and A-theorem [23] in the bulk
case, and is one of the most important problems left open by the present work. Another
promising open direction is to consider possible applications of boundary form factors and
correlation functions in the area of boundary quantum field theory and condensed matter.
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A Heuristic derivation of the FF axioms

We present some heuristic arguments, along the lines of [3], for the derivation of boundary
form factor axioms using the boundary reduction formula [9)].

We analyze the analyticity properties of the form factor
FO = F,?(@l, 92, e ,Qn) = <O|O(O)‘91, ‘92, ooy 9n>zn

n

as a function of the variable 6;.
We follow the notations of [9]: The asymptotic creation/annihilation operators can be
expressed in terms of the free asymptotic fields as

0 . x4

ai,(0) = 2@'/ dz cos(k(0)x)e™ Dt 9,d,, (x, 1) (35)
= o

al (0) = —22’/ dz cos(k(0)x)e O 5,d,, (x,1) .

where k(6) = msinh 6§ and w(f) = mcosh . The in state is a free state and we have
(010(0)[61, 03, . ..., On)in = (0]O(0)ag, (01)[02, - . ., On)in (36)
We use (B3 together with
O(0)P;,(z,t) = [O(0), P (2, )] + Py (, 1) O(0)

to obtain

0 <~
FP = disc. — 21’/ dx cos(k(6y)x)e= 9, (0][0(0), Pip(z, )]0z, . - -, Op)in - (37)

—00

where the disconnected part is

disc. = (0]a,(0,)O(0)|0s, . . ., 0)in = (Olat,(01)|0)EC, (0, . .., 0,)
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Note that in theories with nonzero vacuum expectation values of the field ® the matrix
element (0|a;, (61)|0) is nonzero and can be written as

(0l (61)10) = S2m5(6, ~ 7))

which corresponds to the one particle term in the boundary state in the crossed channel

[B]. It was conjectured in [7] and later confirmed using TBA arguments [24] that the one

particle contribution to the boundary state has a coefficient equal to § rather than g as

suggested in [B]. In the channel we use here this translates directly into the equation above.

Supposing that the in field can be expressed in terms of the interacting field as ®(z, t) —
Z12®,,(z,t) for t — —oo and that [O(0), ®(z,0)] = 0, the connected part can be written
in the form

conn. = i7" 1/22/ d:zc/ dt@t{cos(k(Ol) Je~ =@t 5, (0][O(0), <I>(at,t)]|92,...,9n>m}

Performing the usual partial integration while taking care of the surface term we obtain
conn. = z'Z_l/22/d2:Be WOV cog(k(61)2)O(—1)(0][0(0), J(z,1)]|0a, - . ., 0n)in (38)

where J(z,t) = {O4+m?+8(x)0, }®(x,t) and the integration goes over the entire spacetime.
The range of the integration is the interior of the past light cone due to the presence of
©(—t) and of the vanishing of [O(0), J(x, t)] on space-like intervals. The analytic properties
of the integral are determined by the exponent for large negative times. The exponent
decreases if Im(w(fy)) > 0 thus the in form factor (¢, > 65 > --- > 6, > 0) allows an
analytical continuation into the domain:

0< %m(@l) <7
Repeating the same procedure for the out matrix elements
FT(LQ(—Ql, —92, ey —Gn) - <O‘O(O)| - 91, —92, ey _9n>out

we obtain the domain of analytical continuation: 0 < Sm(—6,) < 7.
To derive the crossing relation we consider the following matrix element

Fl(;)z—l = Fﬁ_1(91|92, ceey Qn) = m<91|0(0)|92, e a9n>m

Applying the reduction formula to the particle with rapidity 6; (B3) we obtain

FP | =disc — 2@'/ dx cos(k(01)x)e ww(Or)t (O|[ (0), Pin(x,t)]|62, - - -, 0n)in

— 00

where the disconnected part (supposing 6, > 6s) is
disc. = <O|O(O)CL:;L(91)‘92, ey 9n>zn = m<91|92>mFr?_2(93, e ,(9")
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Performing a partial integration as before the result for the connected component is
conn. = iZ_1/22/d2xei‘“’(91)t cos(k(01)x)O(—t)(0][O(0), J(z,1)]|02, - - ., On)in (39)

which has an analytic continuation for
-1 < %m(ﬁl) <0

Comparing ([BS) with (BY) and using that m cosh(6; +im) = —m cosh 6, the crossing relation
@) is proved. Similar result can be obtained for an out state and the —0; < —fy < --- <
—0,, < 0 range of the parameters.

The reflection property (Axiom II) can be shown by considering

FO0,.0s,....0,) = (0[0(0)|01, 05, .., 0)in

and crossing all particles except the one with rapidity 6, to the left. Now inserting a
complete set of out states we have

in(. - 100)]0n)in = Z in(- - - |A0)]1) out out (12O )in

out

where only the first two terms are nonzero:

in(- - |O0)0n)in = in - - [A0)[0){010n)in + D (- - [A0)]O) out out (0100 )in

The connected part gives the required R factor while the disconnected one combined with
the disconnected part in (B17) and the permutation property gives the boundary kinematical
singularity.

The permutation property in the bulk case is usually derived from very similar argu-
mentation we used above for showing the reflection property. Note, however, that the
same result can be obtained from the analysis of the singularity structure of the Green
functions: the part, which is responsible for the discontinuity in the form factor by chang-
ing two neighboring rapidities, is related to the bulk S-matrix. The permutation property
in the boundary case (Axiom I) can be derived only from the second approach, namely from
a detailed investigation of the singularity structure of the Green functions. By extending
the result on the two point function in [9] one can show that multi point functions have
momentum preserving parts identical to their bulk counterparts and exactly these parts
contribute only, when two neighboring (both positive) rapidities are changed, and cause
the same discontinuity in the form factor we met in the bulk case.

The kinematical singularity equation (Axiom IV) can be obtained (using the permu-
tation and reflection axioms) from the analysis of the disconnected components in the
crossing relations as obtained for the in and for the out states:

FO (£60,| 0y, ...,40,) = FO>im £ 01, 40,,...,£0,) +216(0) — 02)F° 5 (05, ..., +6,)

Although our derivation of the boundary form factor axioms is heuristic to some extent
we expect that the formulation of the same ideas in a rigorously defined quantum field
theoretical framework would lead to the proper and mathematically founded derivation
(but note that this has not been performed yet in the bulk case either).
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B Formal derivation of the FF axioms

Here we show how the boundary form factor axioms can be formally derived from a bound-
ary analogue of the Faddeev-Zamolodchikov algebra.

In the bulk case one introduces creation Z*(#) and annihilation Z(6) operators corre-
sponding to asymptotic states. They are defined for real rapidities # € R and satisfy the
following defining relations

Z5(00)Z7(02) = S(61—02)27(62) 27 (61)
Z(01)Z(02) = S0 —02)2(02)Z(61)
Z2(01)27(02) = S(02—01)Z7(02)Z(61) + 2m6(61 — b2) (40)

Extending Z, Z* to imaginary rapidities (treating 6 as a 27i periodic complex variable) we
encounter singularities in their products at ¢; = 6, + iw with residues

—i Res Z%(01)Z%(02) =1

01=0>+im
and
—1  Res 2(91>Z(92) =1

01=0>+im

These can be formulated by postulating the crossing property
Z(0)=2Z"(0+im)

and taking into account the defining relations (E{). We note that using this identification
all of the defining relations (H) can be combined into a single one

Z*(@l)Z*(Gg) == 5(91 - HQ)Z*(HQ)Z*(HI) + 277'(5(91 - 92 - Z7T)

In the boundary case the generators Z, Z* are defined only for positive values of the ra-
pidity arguments and additionally two new formal generators are introduced creating the
boundary vacuum as follows

|0)s = B*|0) , B0 = (0| B
We introduce two new relations
Z*(0)B* = R(0)Z*(—0)B*

and
BZ(0) = BZ(—0)R(-0)
which describe how we can extend the generators for negative rapidities. By analytically

continuing in the rapidity again we have singularities in the operator products

~i Res 2°(0)B" = gB*
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and
Res BZ(6) = gB

1
9:—@5

They would correspond to particles with real rapidity in the crossed channel (exchanging
time and space coordinates). These new relations can again be summarized in a single one

T

Z°(0)B" = R(6)2"(=6)B" +2r3(0 — =)3 B"

2
together with its formal conjugate

B2(6) = BZ(~0)R(~6) + 256 + )0 B

We claim that representing the form factor of the boundary operator O(0) as
F(0r,-.. . 00) = (01BO(0) Z*(01) ... Z"(6) B*|0)

and supposing locality
[0(0), 27(0)] = 0

we can recover all the non-singularity type form factor axioms immediately. For deriving
the singularity axioms we have to observe that singularity appears not only from a single
term. E.g. in the boundary kinematical singularity axiom, the form factor F°(6,,...,6,)
exhibits a singularity in 6, at i3 coming from two places: the operator product of both B
and B* with Z*(6,) is singular. Supposing that they appear in additive terms of the form
factor we can obtain the desired formula.

Finally, we note that formulating the boundary FZ algebra in the spirit of [25] might
lead to a more rigorous derivation of our axioms.

References

[1] G. Mussardo, Phys.Rept. 218, (1992) 215-379.

|2| P. E. Dorey, Fzact S matrices, Lecture Notes in Physics, Springer, eds. Zalan Horvath
and Lészlo Palla, E6tvos Summer School in Physics: Conformal Field Theories and
Integrable Models, Budapest, Hungary, 13-18 Aug 1996.

|3] F.A. Smirnov: Form-factors in completely integrable models of quantum
field theory, Adv. Ser. Math. Phys. 14 (1992) 1-208.

|4] H. Babujian, A. Fring, M. Karowski, A. Zapletal, Nucl. Phys. B538 (1999) 535-586.

[5] S. Ghoshal and A.B. Zamolodchikov, Int. J. Mod. Phys. A9 (1994) 3841-3886
(Erratum-ibid. A9 4353), hep-th/9306002.

37


http://arxiv.org/abs/hep-th/9306002

[6] G. Mussardo, Spectral Representation of Correlation Functions in two-dimensional
Quantum Field Theories, hep-th/9405128.

[7] P. Dorey, M. Pillin, R. Tateo and G. Watts, Nucl. Phys. B594 (2001) 625-659.
|8] J.L. Cardy and G. Mussardo, Nucl. Phys. B340 (1990) 387-402.

[9] Z. Bajnok, G. Bohm and G. Takacs, J. Phys. A35 (2002) 9333-9342, hep-th /0207079.
Z. Bajnok, G. Bohm and G. Takacs, Nucl. Phys. B682 (2004) 585-617,
hep-th/0309119.

[10] M. Jimbo, R. Kedem, H. Konno, T. Miwa, R. Weston, Nucl. Phys. B448 (1995)
429-456.

[11] Y.-H. Quano, Int.J.Mod.Phys. A15 (2000) 3699-3716, J. Phys. A33 (2000) 8275,
J.Phys. A34 (2001) 8445-8464.

[12] B. Hou, K. Shi, Y. Wang, W.-1. Yang, Int. J. Mod. Phys. A12 (1997) 1711-1741.
[13] P. Dorey, R. Tateo and G. Watts, Phys. Lett. B448 (1999) 249-256.

[14] A. Fring, G. Mussardo, P. Simonetti, Nucl. Phys. B393 (1993) 413-441.

[15] M. Karowski and P. Weisz, Nucl. Phys. B139 (1978) 455-476.

[16] G. Delfino and G. Mussardo, Nucl. Phys. B455 (1995) 724-758, hep-th/9507010.
[17] ALB. Zamolodchikov, Nucl. Phys. B348 (1991) 619-641.

[18] P. Dorey, A. Pocklington, R. Tateo and G. Watts, Nucl. Phys. B525 (1998) 641-663.
[19] J.L. Cardy and G. Mussardo, Phys. Lett. B225 (1989) 275-278.

[20] E. Corrigan, A. Taormina, J.Phys. A33 (2000) 8739.

[21] A. Koubek and G. Mussardo, Phys. Lett. B311 (1993) 193-201, hep-th/9306044.

[22] A. B. Zamolodchikov, Pis’'ma Zh Eksp. Theor. Fiz. 43 (1986) 565. (JETP Lett. 43
(1986) 730.)

[23] G. Delfino, P. Simonetti and J-L. Cardy, Phys. Lett. B387 (1996) 327-333.
|24] Z. Bajnok, L. Palla and G. Takacs, Nucl. Phys. B716 (2005) 519-542.

[25] M.R. Niedermaier, Nucl. Phys. B440 (1995) 603-646; Erratum-ibid. B456 (1995) 755.

38


http://arxiv.org/abs/hep-th/9405128
http://arxiv.org/abs/hep-th/0207079
http://arxiv.org/abs/hep-th/0309119
http://arxiv.org/abs/hep-th/9507010
http://arxiv.org/abs/hep-th/9306044

	Introduction
	Boundary form factors
	Definitions
	Axioms
	Consistency checks
	General solution
	One particle form factors
	Two-particle form factors
	Multi-particle form factors

	Two-point function

	Model studies
	Massive scalar with linear boundary interaction
	Direct calculation
	Solving the form factor equations

	Ising model with boundary magnetic field 
	Direct calculation
	Solution of the FF bootstrap

	The boundary scaling Lee-Yang model
	Lee-Yang model with perturbed  boundary 
	Lee-Yang model with the 1 boundary

	The boundary sinh-Gordon model
	Sinh-Gordon model with 0=0 Dirichlet b.c.
	Sinh-Gordon model with 0=0 Dirichlet b.c.


	Conclusion
	Heuristic derivation of the FF axioms
	Formal derivation of the FF axioms 

