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Abstrat

To lassify the lassial �eld theories with W -symmetry one has to lassify the sympleti leaves of

the orresponding W -algebra, whih are the intersetion of the de�ning onstraint and the oadjoint

orbit of the a�ne Lie algebra if the W -algebra in question is obtained by reduing a WZNW model.

The �elds that survive the redution will obey non-linear Poisson braket (or ommutator) relations

in general. For example the Toda models are well-known theories whih possess suh a non-linear W -

symmetry and many features of these models an only be understood if one investigates the redution

proedure. In this paper we analyze the SL(n,R) ase from whih the so-alled Wn-algebras an be

obtained. One advantage of the redution viewpoint is that it gives a onstrutive way to lassify the

sympleti leaves of the W -algebra whih we had done in the n = 2 ase whih will orrespond to the

oadjoint orbits of the Virasoro algebra and for n = 3 whih ase gives rise to the Zamolodhikov

algebra. Our method in priniple is apable of onstruting expliit representatives on eah leaf.

Another attrative feature of this approah is the fat that the global nature of the W -transformations

an be expliitly desribed. The redution method also enables one to determine the lassial highest

weight (h. w.) states whih are the stable minima of the energy on a W -leaf. These are important as

only to those leaves an a highest weight representation spae of the W -algebra be assoiated whih

ontains a lassial h. w. state.

1 Introdution

W -algebras have attrated a great interest sine their �rst appearane [11℄. They are extensions of the

Virasoro algebra by higher spin urrents in general in suh a way that the Poisson braket or ommutator

of the urrents give non-linear terms

[Wi,Wj ] = Pij(W ) ,

where Pij(W ) is a polinomial of the urrents. Suh extensions are relevant not only in the lassi�ation

of two dimensional onformal �eld theories but also in desribing various statistial physial models.

There are various ways to obtain the so-alled Wn-algebras on both quantum and lassial level; see

[25, 26℄ for the quantum �eld theoretial aspets where the degenerate representations, the orresponding

null vetors and quantum highest weights were onstruted for W3 and was already pointed out how this

algebra was related to sl(3). Later it was shown in [1℄ that the Toda models whih arry the Wn-algebras

as symmetry algebras are Hamiltonian redutions of the Wess-Zumino-Novikov-Witten (WZNW) mod-

els. The lassial interpretation of the Wn-algebras was disussed from a similar viewpoint also in [30℄

where the onformal Ward-identities were also derived. In [27, 28℄ a di�erent realization was proposed,

the lassial Wn-algebras were related to ertain embeddings of two dimensional manifolds into 2n di-

mensional Kähler manifolds whih onstrution makes global onsiderations possible and quite expliit.

A link between the quantum and lassial levels was established in [29℄ and [2℄. The lassial realization

was studied geometrially in [29℄ where the equation of motion was originated from immersions of a�ne

surfaes of onstant mean urvature in a�ne spae and was shown to be the lassial (c → −∞) limit of

Zamolodhikov's null vetor equation. In [2℄ the null vetor equation was obtained as quantization of the

lassial equation of motion for W3.
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One the lassial W -algebra is given - no matter where it originates from, we have seen there are

various ways to arrive at them - one an ask about its sympleti leaves and lassial highest weight

states. This is the subjet of the present paper. We will follow the gauged WZNW model onstrution as

this approah is the most useful one for our purposes as it will beome lear, but we would like to stress

that other lassial interpretations of W -algebras mentioned above are equally good and the problems we

address are independent of how the lassial algebras were arrived at.

A �phase spae� assoiated to a Poisson manifold is one of its sympleti leaves. For the exploration of

the leaves we will use the well-known lassial result stating roughly that if seond lass onstraints are

imposed on a Poisson manifold P resulting in a submanifold C ⊂ P (whih is also Poisson in a anonial

way) then the sympleti leaves M ⊂ C of C oinide with the sympleti leaves S ⊂ P of P interseted

by C.
In our ase the Poisson manifold P , as we have Ka-Moody symmetry, is the Ka-Moody algebra with

its anonial Poisson struture that omes from the Lie algebra struture. Its sympleti leaves S are

the onneted omponents of its oadjoint orbits and the W -algebra lives on the onstraint submanifold

C determined by the Toda-type onstraints. The statement above means that the sympleti leaves of

the W -algebra are nothing else then the onneted omponents of the intersetion of the onstraint and

the Ka-Moody oadjoint orbits. This implies that to lassify the lassial theories with W -symmetry,

whih is the same as to lassify the sympleti leaves of the W -algebra, one has to lassify the onneted

omponents of the intersetion of the Ka-Moody oadjoint orbits and the onstraint hypersurfae.

Exploring the sympleti leaves in this way enables one in priniple to give expliit representatives on

eah W -leaf whih was arried out in the n = 2 ase but beame tehnially quite umbersome already if

n = 3.
The issue of the lassial h. w. state i.e. a stable minimum of the energy an also be handled by the

redution as the energy funtional and its �rst and seond variation on a W -leaf will �rst be onsidered

on the Ka-Moody oadjoint orbit and then restrited to the intersetion. We will determine whih orbits

ontain a lassial h. w. state whih will indiate that these an give rise to a highest weight representation

spae of the W -algebra.

Yet another advantage of the redution viewpoint is that we an implement the W -transformations

as gauge preserving Ka-Moody transformations. These were given in [1℄ on the Lie algebra level but

our analysis makes it possible to expliitly desribe them on the group level. These are important for

understanding the global nature of W -transformations.

Our motivation for analyzing the lassial geometry of W -algebras is at least twofold. First onsider

quantization. The quantization ofW -algebras started by a free �eld onstrution [14℄, then a BRST method

[16℄ was adopted to produe their quantum ounterparts. None of the approahes above however, relied on

the geometry of W -algebras loosing useful information in this way. For example one possible quantization

proedure would be the geometri quantization of the sympleti leaves for whih it is essential to explore

the underlying geometry.

Our seond motivation omes from a more mathematial ontext. There is a ompletely di�erent

viewpoint of the lassi�ation problem whih has its origin in the �eld of integrable models. In this approah

the lassi�ation of sympleti leaves is related to the homotopy lasses of ertain non-degenerate urves

on projetive spae or sphere whih problem is still unsolved in the general ase [6, 9℄. We will try to

make the relation of the two approahes lear but will not elaborate muh on this diretion. Note that

this formulation is lose in spirit to a third approah whih addresses the problem throught the seond

Gel'fand-Dikii braket [12℄.

In setion 2 we will summarize the well-known setting of the WZNW models onentrating on the

symmetry properties. Setion 3 will be a summary of those features of the geometry of loop groups and

their entral extensions whih are neessary for our onsiderations. This setion will losely follow [33℄.

After these rather general remarks we will set the stage for the redution proedure in the ase of the

SL(n,R) WZNW model in setion 4 for whih the main referene is [1℄. The detailed analysis will be done

in the two simplest ases; the SL(2,R) ase will amount to the lassi�ation of the oadjoint orbits of the

Virasoro algebra and the well-known result will be reovered [6, 17, 18, 19℄. The SL(3,R) ase in setion

6 will produe the simplest W -algebra, the so-alled Zamolodhikov algebra and we will mainly fous on

the behaviour of the energy funtional on the W -leaves rather then giving expliit representatives on eah

of them. We will summerize our and omment on other results and open questions in setion 7.
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2 WZNW models

The usual ation of the WZNW model on a onneted, non-ompat, simple Lie group is the following:

S =
k

8π

∫

Σ

d2x ηµνTr(g−1∂µg)(g
−1∂νg)−

k

12π

∫

B

Tr(g−1dg)3 ,

where k is the oupling onstant, Σ = S1 ×R is the 1+ 1 dimensional Minkowski spae, B is a 3-manifold

whose boundary is Σ, ηµν is the Lorentzian metri on Σ, and g : Σ −→ G is the dynamial �eld. If

a ertain element in H3(G) is not zero then k has to be an integer otherwise the ation or rather the

transition amplitudes are ill de�ned [31℄.

The equations of motion look in terms of the urrents in light-one oordinates as

∂−J+ = 0 , ∂+J− = 0 ,

where J+, J− : Σ −→ g are the Lie algebra valued urrents,

J+ = k∂+gg
−1, J− = −kg−1∂−g ,

and x± = t± x are the light-one oordinates on Σ. The solutions are simply that J+ depends on x+, J−
on x− only, whih means they are periodi funtions of one variable. This implies that the solution in the

language of the g �eld is

g(x+, x−) = g+(x+)g−(x−)

where g+ and g− are quasiperiodi group valued �elds whih means g+(x+ + 2π) = g+(x+)M and that

g−(x− − 2π) =M−1g−(x−) for some M ∈ G monodromy.

The ation of an x+ dependent hiral h(x+) Ka-Moody transformation on the �elds are:

g 7−→ hgh(0)−1

J+ 7−→ hJ+h
−1 + k∂+hh

−1 , (1)

and analogous formulas hold for J−. These hiral transformations are symmetries of the ation and we will

see that these are nothing but the oadjoint ation of the entrally extended loop group, and to make the

identi�ation more transparent h(0)−1
is de�ned into the transformation of g. This modi�ation is atually

a ombination of the left loal, g(x+, x−) 7−→ h(x+)g(x+, x−), and the right global, g(x+, x−) 7−→
g(x+, x−)h(0)

−1
, transformations whih are both symmetries of the ation. The onservation laws that

orrespond to these symmetries oinide with the equations of motion.

From this point forward we will only deal with the �+� hirality and J , g and x will mean J+, g+ and

x+. So g and J are funtions of one variable, J is periodi g is quasiperiodi only.

As the J urrent generates the (1) transformations whih will turn out to be the oadjoint ation

of the entrally extended loop group the Poisson brakets of its omponents oinide of ourse with the

ommutation relations of the Ka-Moody algebra. Let {ta} be a basis of g, then J(x) = Ja(x)t
a
and

{Ja(x), Jb(y)} = f c
abJc(x)δ(x − y) + kKabδ

′(x− y) ,

where δ(x) is the 2π periodi δ-funtion, f c
ab are the Lie algebra strutural onstants and Kab is the Killing

form.

3 Loop groups and their entral extensions and oadjoint orbits

Let G be a onneted and simple Lie group. The loop group LG, assoiated to G is the group of smooth

S1 −→ G mappings with pointwise multipliation [33℄. The following observation will be important: if G
is not simply onneted then LG is not onneted as the onneted omponents of LG are labeled by the

fundamental group of G.
Let us parametrize the irle with x ranging from 0 to 2π. The map h 7−→ (h(0), h h(0)−1) is a

di�eomorphism between LG and G× ΩG where ΩG is the group of suh loops that start at the identity.

On G× ΩG the group multipliation is a semi-diret produt:

(A, γ)(B, η) = (AB, γ AηA−1), A,B ∈ G, γ, η ∈ ΩG ,

so γ(0) = η(0) = 1. The Lie algebra of LG, Lg, is the spae of smooth S1 −→ g mappings, the Lie algebra

of ΩG, Ωg, is the spae of suh loops that start at the origin.
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The Ka-Moody algebras are the entral extensions of Lg, they are denoted by ĝ. Sine G is simple

the extension by R is unique up to a salar fator and the orresponding oyle is c(J1, J2) = 〈J ′
1, J2〉,

where

〈J1, J2〉 =
2π∫

0

TrJ1(x)J2(x)
dx

2π
(2)

is a non-degenerate form on Lg. Note that the oyle c : Lg×Lg −→ R is degenerate, its kernel onsists

of preisely the onstant elements but if it is restrited to Ωg × Ωg it will turn non-degenerate as the

onstant elements in Ωg are zero.

While onsidering the oadjoint orbits of the entrally extended loop groups it is learly enough to deal

with the ation of LG and Lg on ĝ as we have a entral extension at hand. Note that we have not touhed

the deliate issue of entral extensions on the group level and we will ontinue to ignore this subtlety. It

is easy to hek that the adjoint ation of K ∈ Lg and h ∈ LG on ĝ is

K · (J, k) = ([K, J ], c(K, J)) ,

h · (J, k) = (hJh−1, k − 〈h−1h′, J〉) .
The oadjoint ation will be onsidered also on ĝ after identifying the dual of Lg with Lg by the (2) salar

produt and turns out to be

h · (J, k) = (hJh−1 + kh′h−1, k) ,

where · now of ourse means the oadjoint ation. In the �rst omponent we have the symmetry transfor-

mation (1) of the WZNW model and the entral term is invariant, so we will think of the oadjoint ation

of the entrally extended loop group as an ation of LG on Lg with a given k �xed. The orresponding

orbit will be referred to as the Ka-Moody oadjoint orbit or simply as the oadjoint orbit.

Let us onsider the quasiperiodi group valued �eld of the WZNW model with M ∈ G monodromy

for analyzing the oadjoint orbits. The assoiation of J to g via the J = kg′g−1
de�nition is one-to-one

between the spae of quasiperiodi group valued �elds and Lg if we add the g(0) = 1 initial ondition

whih will mean that M = g(2π). Note that this initial ondition is the reason for inluding the onstant

term in (1). To a given J(x) orresponds the path ordered g(x) = P exp(
∫ x

0 J(y)dy). If the transformation

of J is J 7−→ hJh−1 + kh′h−1
then the assoiated g transforms as g 7−→ hgh(0)−1

whih are the

symmetry transformations of the WZNW model. The monodromy also hanges to M 7−→ h(0)Mh(0)−1
.

This means that if two Js are on the same orbit then the orresponding monodromies are onjugated in

G. The other way around take two elements in Lg, J1 and J2 and let the orresponding quasiperiodi

�elds and monodromies be g1, g2 and M1 and M2. Let us assume that the monodromies are onjugated

by an A ∈ G, M2 = AM1A
−1
, then g2Ag

−1
1 is periodi and takes J1 to J2 whih means they are on the

same orbit.

To summarize the above onsiderations there is an equivariant orrespondene between the onjugay

lasses of G and the Ka-Moody oadjoint orbits whih fat greatly simpli�es the study of the latter. For

example it is fairly straightforward to determine the isotropy subgroup, HJ ⊂ LG, of a given J beause

if h leaves J �xed then it must be true that g = hgh(0)−1
and h(0) ommutes with the orresponding

monodromy, whih means that h is suh that h = gAg−1
where h(0) = A is any element whih ommutes

with M . This implies that the map h 7−→ h(0) is an isomorphism from HJ to the ommutant subgroup

of M in G, hene we will think of HJ as a subgroup of G.
In general any orbit an be realized as a homogenous manifold whih gives in our ase the realization

OJ = LG/HJ = (G × ΩG)/HJ where OJ is the oadjoint orbit of J . As HJ an be thought of as a

subgroup of G one might suspet that the fatorization only takes plae in the �rst (G) omponent. To

make this idea preise onsider the map:

π : OJ −→ G/HJ

h·J 7−→ [h(0)] , (3)

where · is the oadjoint ation and [h(0)] is the lass of h(0) in G/HJ . This map is easily seen to be

well de�ned. It is lear that π−1([A]) is nothing other then those elements in OJ whose monodromies are

AMA−1
and that on this set ΩG ats freely as if the monodromy of g is AMA−1

and γ ∈ ΩG then the

monodromy of γgγ(0)−1 = γg is the same. Loal trivializability an also be established. Summarizing,

the oadjoint orbits of Ka-Moody groups are prinipal ΩG-bundles over G/HJ , hene all the in�nite

dimensional subtleties were isolated in the �ber and is the same for all orbit and the orbit spei� features

were aptured in the �nite dimensional homogenous manifold G/HJ .
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Let us elaborate a little more on the important speial ase when the monodromy M has a logarithm

in g i.e. it is of the form M = exp(X) for some X ∈ g. Having suh an M at hand an obvious hoie for

the quasiperiodi �eld with this monodromy is g(x) = M
x

2π
. To this g orresponds the onstant urrent

J = 1
2πX whih shows that in this speial ase the orbit ontains a onstant representative whih is not

true in general for non-ompat groups. Put it the other way it is quite obvious that if an orbit ontains

a onstant representative then the orresponding monodromy has a logarithm.

The isotropy subgroup of a onstant J = 1
2πX onsists of only those onstant elements in LG whih

ommute withM whih is the same as the isotropy subgroup of X , HX , with respet to the adjoint ation

of G on g. Reall that the (o)adjoint orbit of X , OX , an be identi�ed with G/HX whih makes it lear

that in this ase the OJ orbit is a prinipal ΩG-bundle over OX :

OJ −→ OX

h·J 7−→ h(0)Xh(0)−1

and the map

OJ −→ OX × ΩG

h·J 7−→ (h(0)Xh(0)−1, h h(0)−1)

trivializes OJ . Note that the (3) bundle an be trivialized in any ase over G/HJ not only when M
possesses a logarithm but in general the trivializing map is more ompliated.

The hiral energy in the WZNW model is of the usual form

E(J) =
1

2
〈J, J〉 = 1

2

2π∫

0

TrJ2(x)
dx

2π
(4)

whose ritial points on the orbit are the onstant elements beause if δJ = [K, J ] + kK ′
for a K ∈ Lg

then

δE = k

2π∫

0

TrJ(x)K ′(x)
dx

2π
(5)

whih is obviously zero only for anyK if J is onstant. This an also be seen by noting that E(J) generates
the rigid rotations of the irle and the ritial points should be invariant, hene they must be onstant.

The ritial points are minima of the energy only if the seond variation is positive semi-de�nite, whih

turns out to be at a ritial point evaluated on two elements K1,K2 ∈ Lg

δ2δ1E = k

2π∫

0

Tr (J [K ′
1(x),K2(x)] + kK ′

1(x)K
′
2(x))

dx

2π
. (6)

whih is symmetri in K1 and K2 for a onstant J as it should be. The positive semi-de�niteness of this

quadrati form is equivalent to the positive semi-de�niteness of the operator

−k2
(
d

dx

)2

+ kadJ
d

dx

on Lg.

4 SL(n,R) WZNW model and redution

Systems with W -symmetry an be obtained from WZNW models based on maximally non-ompat Lie

groups by imposing appropriate onstraints. In general an sl(2,R) embedding is needed in the Lie algebra

in order to de�ne the onstraints but we will only deal with the prinipal embedding in the SL(n,R)
ase from whih generalization to other groups and embeddings is straightforward. From now on J/k is

denoted by J (assuming that k 6= 0) and k will not appear expliitly in the formulas. The onstraint is

the �xing of ertain omponents of the urrent:

Jα(x) =

{
1 if α ∈ ∆−
0 if α ∈ Φ− \∆−

5



if the Cartan basis is hosen in g and where Φ− is the set of negative roots and ∆− is the set of simple

negative roots.

These onstraints mean that the form of J is restrited in the following way:

J =




∗ ∗ . . . . ∗
1 ∗ ∗ .
0 1 ∗ ∗ .
. 0 1 .
. . .
. . ∗ .
0 . . . 0 1 ∗




.

It is easy to show that these are �rst lass onstraints in the sense of Dira and generate gauge

transformations whih are preisely the transformations generated by the omponents of the urrent

orresponding to the positive roots. One possible gauge �xing is the Wronsky gauge in whih the urrent

takes the form

J =




0 W2 W3 W4 . . Wn

1 0 0 . . . 0
0 1 0 .
. 0 1 .
. . .
. . 0 .
0 . . . 0 1 0




. (7)

One an think of the above form as the onstrained form of the urrent by seond lass onstraints and an

alulate the Poisson braket of the redued W2, . . . ,Wn �elds three di�erent ways. As gauge invariant

quantities one an use the original Poisson braket, or as �elds left from seond lass onstraints one

an adopt the Dira formalism. The third possibility is based on the fat (more or less de�nition) that

the Poisson braket taken with a Wm �eld is the same as the in�nitezimal W -transformation generated

by it and the brakets an be read o� from the transformation properties. The braket of the W2 = L
energy-momentum tensor with itself gives the Virasoro algebra of ourse and suitable ombinations of the

other Wm �elds transform as primary �elds of weight m under onformal transformations. The braket

of two Wm �elds (m 6= 2) gives non-linear expressions in the others. This Poisson algebra is alled the

Wn-algebra.

The energy-momentum tensor generates the onform transformations out of whih the rigid rotations

are generated by the hiral energy E = L0 =
∫ 2π

0 L(x) dx2π , hene the ritial points of the energy on a

W -leaf are those points whih are invariant under rigid rotations i.e. allWm �elds must be onstant whih

means that this property has survived the redution.

The onstraint on the urrent gives also restritions on the g �eld. For the urrent to have the gauge

�xed (7) form g must take the form

g =




ψ(n−1)

.

.

.

ψ′

ψ




, (8)

where ψ : R −→ Rn
is a quasiperiodi row vetor with M monodromy and ψ(n−1)

is the (n − 1)th

derivative. The det g = 1 and g(0) = 1 onditions mean further restritions on ψ and it follows from the

J = g′g−1
relation that its omponents are the linearly independent solutions of the

ψ(n) =

n−1∑

m=2

Wmψ
(n−m)

(9)

nth
order linear di�erential equation whih is the �eld equation of the redued theory in one hirality.

Note that in ase n = 2 equation (9) turns into the Hill equation whih was used in [17℄ for analyzing

the oadjoint orbits of the Virasoro algebra. Also note that if ψ in (8) is multiplied by any periodi
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funtion r(x) then det g piks up a fator of rn(x), whih shows that the length of ψ is irrelevant, it

an be thought of as a quasiperiodi urve in RPn−1
or Sn−1

and the det g 6= 0 ondition is a ertain

non-degeneray ondition whih makes it lear that the sympleti leaf lassi�ation problem is equivalent

to the determination of homotopy types of quasiperiodi non-degenerate urves on projetive spae or the

sphere. This approah is followed in [6, 9℄.

The Ka-Moody transformations whih preserve the gauge �xed form of the urrent or equivalently

the (8) onstrained form of g are also symmetries of the redued model, these are the W -transformations.

To give an expliit desription of them let us onsider the onstrained g �eld in the form of (8). It is not

di�ult to show that this form is preserved by an h ∈ LG Ka-Moody transformation

h =




an

.

.

.

a2

a1




, (10)

only if the am : S1 −→ Rn
row vetors satisfy the am+1 = a

′
m + amJ, m = 1 . . . n− 1 reursion relation

whose solution is

am+1(x) = a1(x)

(
d

dx
+ J(x)

)m

,

where di�erentiation ats on the left. If the urrent is not in the gauge �xed form then the expression (10)

gives those transformations whih bring it to the gauge. As a onsequene of the reursion relation any

omponent of h an be expressed in terms of a1, the only restrition on it is the deth = 1 ondition whih

makes it possible to express the last omponent of a1 with the others on the in�nitezimal (Lie algebra)

level. The next to the last omponent generates the onformal the others the W -transformations.

Based on the above redution proedure it is not hard to �nd the number of independent vetor�elds

that leave all the Wm �elds �xed by the orresponding W -transformation. Beause if it leaves them �xed

one an neglet the onstraint hypersurfae and the answer is the dimension of the isotropy subgroup

HJ ⊂ G of J . Attaking this problem by brut-fore methods would involve the determination of the number

of independent solutions of ompliated di�erential equations subjet to periodi boundary onditions

whih is in general quite umbersome. This diret method was used in [18℄ for determining the possible

dimensions in the ase of the Virasoro algebra.

To list all lassial models with suh a W -symmetry one has to lassify the sympleti leaves of the

non-linear Poisson struture of theWm �elds. These an be obtained, just as in the �nite dimensional ases

[21, 22℄, as the intersetion of the oadjoint orbit of the original symmetry algebra, whih is of ourse the

SL(n,R) Ka-Moody algebra, and the onstraint hypersurfae as it an be implemented by seond lass

onstraints. Or more preisely as a sympleti leaf is onneted by de�nition, the onneted omponents

of the intersetion should be determined.

5 SL(2,R) Ka-Moody and Virasoro algebra

The only omponent of the urrent that survives the redution is the W2 = L energy-momentum tensor

whih means that applying our method in this ase will result in the lassi�ation of the oadjoint orbits

of the Virasoro algebra and should reprodue the well-known results [6, 17, 18, 19℄. In [17℄ the authors

lassi�ed the Virasoro orbits through the study of the Liouville (or Hill) equation, hene our method

will be a onstrutive way of produing the onformally inequivalent solutions of the Liouville (or Hill)

equation.

Also important to note that sine π1(SL(2,R)) = Z, whih is given by the winding number of the

seond row of the SL(2,R) matrix, every Ka-Moody orbit onsists of Z onneted omponents. If a J
urrent is given on a spei� omponent of an orbit then to take it to other omponents of the same orbit

one an apply for example the

Tn(x) =

(
cos(nx) − sin(nx)
sin(nx) cos(nx)

)

Ka-Moody transformation whih has winding number n, where n is any integer. As the sympleti leaves

are onneted one has to determine the onneted omponents of the intersetion of the Ka-Moody orbit

and the onstraint hypersurfae. It will turn out that the onstraint either intersets eah omponent of
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the Ka-Moody orbit in one piee or it does not interset it at all. This means that the Virasoro orbits

an be labelled by the onjugay lass of the monodromy matrix and by those ns to whih omponent

belongs an intersetion. The issue of the existene of the intersetion will be dealt with in the following

way, if a urrent is given on a spei� omponent of a Ka-Moody orbit we will try to transform it to

the desired

(
0 L
1 0

)
form by a Ka-Moody transformation that has winding number zero in order to

stay on the same omponent. If this an be done the resulting L will immediately be a representative

of the Virasoro orbit, if it an not be done then the omponent in question has no intersetion with the

onstraint hypersurfae.

Before the details note one more qualitative remark: aording to setion 4 the energy-momentum

tensor an be left �xed by 1 or 3 generators only as the group SL(2,R) has only 1 and 3 dimensional

isotropy subgroups, so in the realization Di�(S1)/H of the Virasoro orbits the dimension of H an only

be 1 or 3 as it is well-known. In the detailed analysis we will give the vetor�elds for eah representative

of the Virasoro orbit whih leaves it �xed under the oadjoint Virasoro ation.

After imposing the onstraint and the det g = 1 ondition only one free funtion φ remains in g:

g =




(
sinφ√

φ′

)′ (
cosφ√

φ′

)′

sinφ√
φ′

cosφ√
φ′


 ,

where of ourse φ′ > 0. The g(0) = 1 initial ondition and quasiperiodiity of g implies that

φ(0) = 0, eiφ(2π) =
d+ ic√
d2 + c2

φ′(0) = 1, φ′(2π) =
1

d2 + c2
(11)

φ′′(0) = 0, φ′′(2π) = −2
cd+ ab

(d2 + c2)2
,

where M =

(
a b
c d

)
is the monodromy matrix. The ondition on φ(2π) and the fat that φ is mono-

tonially inreasing implies that one an �nd an integer N ≥ 0 suh that

φ(2π) = α+ 2πN , (12)

where eiα = d+ic√
d2+c2

and 0 < α ≤ 2π. It does not make sense to talk about the winding number of φ as

it is only quasiperiodi but the N ≥ 0 integer just de�ned desribes its winding in a ertain sense. More

preisely let J1 and J2 be two gauge �xed elements on the same Ka-Moody orbit but not neessarily on the

same omponent. Their monodromies are onjugated by an A ∈ SL(2,R), M2 = AM1A
−1
. Let g1 and g2

be the quasiperiodi �elds assoiated to them and sine they are gauge �xed they an be expressed with a

φ1 and φ2 funtions whose invariant are denoted byN1 and N2. Then J1 and J2 are on the same omponent

if and only if N1 = N2. One has only to prove that the winding number of h = g2Ag
−1
1 : S1 −→ SL(2,R)

whih takes J1 to J2 is zero if and only if N1 = N2 but this is not di�ult. So the N invariant desribes

on whih Ka-Moody omponent is the J relative to a presribed representative.

The spae of φ funtions with �xed monodromy and N invariant, subjet to the (11) onditions is

learly onneted so if the monodromy is �xed the onstraint hypersurfae an interset eah omponent

in maximum one piee. Besides, if the monodromy is hanged within its onjugay lass then in those

omponents where there was an intersetion it will ontinue to be so, whih means that the onstraint

hypersurfae intersets a Ka-Moody omponent in either one piee or not at all. It also turns out from this

analysis that sine N ≥ 0 only those Ka-Moody omponents an have an intersetion with the onstraint

that are �above� the presribed representative whih fat will be transparent in eah spei� ase in the

detailed analysis.

In eah gauge �xed urrent the total degrees of freedom is in the orresponding φ. The energy-

momentum tensor an be expressed as:

L = −φ′2 + 1

2
S(φ) ,

where S(φ) = 3
2
φ′′2

φ′2 − φ′′′

φ′
is the Shwarzian derivative. We have brought any L to the above form whih

is quite remarkable as if it would be true that φ(x+ 2π) = φ(x) + 2π then this formula would mean that
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any L is on the orbit of −1 whih is of ourse not true beause the ompliated (11) formulas hold for

φ(x+ 2π) instead of the previous one.

To lassify the Ka-Moody and Virasoro orbits one has to present a omplete list of onjugay lasses.

There are four distint types of these depending on the isotropy subgroup H .

• Ellipti lasses, those monodromies belong here for whih |TrM | < 2,

H =

{(
cos(t) − sin(t)
sin(t) cos(t)

)∣∣∣∣ t ∈ (0, 2π]

}
,

representatives:

M =

(
cos(2πω) − sin(2πω)
sin(2πω) cos(2πω)

)
, ω ∈ (0, 1) , ω 6= 1

2
.

• Hyperboli lasses, those monodromies belong here for whih |TrM | > 2,

H =

{(
t 0
0 t−1

)∣∣∣∣ t ∈ R
∗
}
,

representatives:

M = ±
(
e2πb 0
0 e−2πb

)
, b > 0 .

• Paraboli lasses, those monodromies belong here for whih |TrM | = 2, but M 6= ±1,

H =

{(
±1 0
t ±1

)∣∣∣∣ t ∈ R

}
,

representatives:

M = ±
(

1 0
q 1

)
, q = ±1 .

• Exeptional lasses, H = SL(2,R), representatives: M = ±1, these an be obtained as the ω −→ 0
and ω −→ 1

2 limiting ases of the ellipti ases but the isotropy subgroups are larger.

Aording to setion 4 for a given M one has to �nd a g then the orresponding J urrent has to

be studied whether it an be transformed to the gauge �xed form or not. The most straightforward ase

is when M possesses a logarithm in sl(2,R). When this ours the simplest hoie is g(x) = M
x

2π
to

whih orresponds the onstant urrent J0 = 1
2π logM . From the above listed representatives the ellipti

monodromies have logarithms and from the others in the �+� aseM , in the �−� ase −M has a logarithm

and in the latter ase a possible hoie for g is g(x) = T 1

2

(x)(−M)
x

2π
to whih orresponds the non-onstant

urrent

J 1

2

= T 1

2

J0T− 1

2

+ T ′
1

2

T− 1

2

.

Remember that T 1

2

(x) is the matrix of rotation by

x
2 .

From J0 and J 1

2

we will get a representative on eah Ka-Moody omponent by applying Tn to J0 and

(exept for the ellipti ase) to J 1

2

. To simplify notation from now on let n be a half-integer and

J0 =

(
j1 j2 − j3

j2 + j3 −j1

)

the onstant element. We obtain a representative on eah omponent of the Ka-Moody orbits by setting

Jn = TnJ0T−n + T ′
nT−n = (13)

= (n+ j3)

(
0 −1
1 0

)
+ j1

(
cos(2nx) sin(2nx)
sin(2nx) − cos(2nx)

)
+ j2

(
− sin(2nx) cos(2nx)
cos(2nx) sin(2nx)

)

whih is periodi also for half-integer n as it should be.

To summarize, the Jn in equation (13) for integer n is a representative of the nth
omponent of the

Ka-Moody orbit orresponding to M = e2πJ0
monodromy, and for half-integer n it is a representative

of the (n − 1
2 )

th
omponent of the Ka-Moody orbit orresponding to M = −e2πJ0

monodromy. As a

referene let J0 be on the 0th omponent.

9



To get the Virasoro representatives Jn has to be transformed to the gauge �xed form with an h ∈
LSL(2,R) with zero winding number. Obviously the winding number of

h =

(
R−1 (1 + 1

n
R−2)R′

0 R

)
: S1 −→ SL(2,R)

is zero and is easily heked to bring Jn to the desired form as it is in the form of (10) (and has no

singularity when n = 0), and where

R(x) =
1√

n+ j3 + j1 sin(2nx) + j2 cos(2nx)
.

This is only true of ourse if

n+ j3 + j1 sin(2nx) + j2 cos(2nx) > 0 , (14)

whih has to be heked in eah ase. If this inequality holds the Virasoro representative turns out to be

after straightforward alulations

L = C + 2n(n2 + C)R2 + 3n2(C − n2 − 2nj3)R
4 ,

where C = 1
2Tr(J0)

2 = j21 + j22 − j23 . This is a surprisingly dense form if we take into aount that it

ontains every possible ase and besides it looks very similar to the representatives given in [17℄ obtained

by very di�erent methods. If the (14) inequality does not hold then onjugating J0 by a onstant element

might hange it in suh a way that with the new j1, j2 and j3 the inequality holds. This orresponds

to hoosing a di�erent representative in the onjugay lass of the monodromy. As we will see this will

our in the hyperboli ase. In those ases when this an not be ahieved it is quite easy to show through

the analysis of the deth = 1 equation, where h is of the (10) form, that there is no transformation that

brings Jn to the gauge �xed form whih means that the orresponding Ka-Moody omponent has no

intersetion with the onstraint hypersurfae.

For the sake of ompleteness we will give the vetor�elds for eah representative of the Virasoro orbit

whih leave it �xed under the oadjoint Virasoro ation. The key observation was noted in setion 4 and

is that the (2, 1) omponent of a gauge preserving Ka-Moody transformation generates the onformal

transformations, whih means that for determining the isotropy vetor�elds one has to look for the (2, 1)
omponent of those in�nitezimal Ka-Moody transformations whih leave a partiular gauge �xed urrent

invariant. A general Virasoro representative was obtained from a onstant J0 by applying �rst Tn and then

h to bring it to the gauge �xed form, so those elements whih leave them invariant are obviously of the

form hTnAT
−1
n h−1 ∈ LSL(2,R), where A ∈ SL(2,R) ommutes with the monodromy orresponding to

J0. Hene, the isotropy vetor�elds are given by the (2, 1) omponent of hTnY T
−1
n h−1 ∈ Lsl(2,R), where

Y =

(
y1 y2 − y3

y2 + y3 −y1

)
is any element of the Lie algebra of the ommutant subgroup of M . The (2, 1)

omponent turns out to be

V =
y3 + y2 cos(2nx) + y1 sin(2nx)

n+ j3 + j2 cos(2nx) + j1 sin(2nx)
,

whih an be diretly related to the results of [20℄. Note that in any ase when L is non-onstant and

periodi with period

π
n
a disrete Zn subgroup must appear in the isotropy subgroup orresponding to

rigid disrete rotations of the irle.

The ase-by-ase analysis proeeds as follows:

• Ellipti orbits, n is an integer here and R(x) = 1√
n+ω

where ω ∈ (0, 1) and ω 6= 1
2 so n ≥ 0. The

Virasoro representatives and stabilizing vetor�eld (up to an irrelevant normalization fator) are

L = −(n+ ω)2 , V = 1 .

The V vetor�eld generates an S1
.

• Hyperboli orbits, n is a half-integer here and R(x) = 1√
n+b sin(2nx)

where b > 0. The expression

under the square root an be negative for large b but if J0 is onjugated by

(
1 0
b 1

)
then from
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the new Jn one obtains R(x) = 1√
n+b2+b2 cos(2nx)+b sin(2nx)

whih is well de�ned, where n ≥ 0. The

Virasoro representatives and stabilizing vetor�eld are

L = b2 +
2n(n2 + b2)

n+ b2 + b2 cos(2nx) + b sin(2nx)
+

3n2(b2 − 2b2n− n2)

(n+ b2 + b2 cos(2nx) + b sin(2nx))2
,

and

V =
b+ sin(2nx) + b cos(2nx)

n+ b2 + b sin(2nx) + b2 cos(2nx)
,

whih for n = 0 generates an S1
and for n 6= 0 a one-parameter subgroup isomorphi to R.

• Paraboli orbits, n is a half-integer here and R(x) = 1√
n+ q

2π
cos2(nx)

. If n = 0 only q = 1 is allowed,

otherwise n > 0 and q = ±1 is arbitrary. The Virasoro representatives and stabilizing vetor�elds

are

L = n3

(
2

n+ q
4π (1 + cos(2nx))

− 3(n+ q

2π )

(n+ q
4π (1 + cos(2nx)))2

)
, V =

1 + cos(2nx)

n+ q
4π (1 + cos(2nx))

,

whih again generates an S1
for n = 0 and a subgroup isomorphi to R for n 6= 0. The above form

of L expliitly shows that if n = 0 then only one of the qs are allowed beause if it were not so then

two distint monodromies would orrespond to the same L = 0.

• Exeptional orbits, n > 0 and is a half-integer here and L an be obtained from the ellipti ase as

the ω −→ 0 limit, but the stabilizing subgroup is larger. The Virasoro representatives and stabilizing

vetor�elds are

L = −n2 , V = 1, sin(2nx), cos(2nx) .

These V s generate a 2n-fold �embedding� of SL(2,R) into Di�(S1).

It was noted in setion 4 that the energy an have ritial points only on those orbits whih ontain a

onstant representative. To study the stability of the ritial points let us spell out the (6) seond variation

allowing now only suh Ks that preserve the gauge. Having a onstant L at hand the form of these on the

Lie algebra level are

K =
1

2

(
ε′ εL− ε′′

2ε −ε′
)

aording to the in�nitezimal version of formula (10) where ε : S1 −→ R is some funtion. Calulation of

the diagonal element of the (6) seond variation gives

δδE = 2

2π∫

0

(Lε′
2
+

1

4
ε′′

2
)
dx

2π

whih is easily seen to be non-negative for any ε if and only if L ≥ − 1
4 .

6 SL(3,R) Ka-Moody and Zamolodhikov algebra

In the SL(3,R) WZNW model two �elds survive the redution, the W2 = L energy-momentum tensor and

the W3 = W �eld. There are two free funtions in the in�nitezimal version of the (10) gauge preserving

transformations out of whih the seond omponent of a1 generates the onformal and the �rst omponent

the W -transformations. Applying suh an in�nitezimal transformation to a gauge �xed urrent one an

read o� the Poisson brakets [1℄:

{L(x), L(y)} = L′(x)δ(x − y)− 2L(x)δ′(x − y)− 2δ′′′(x− y)

{L(x),W (y)} = W ′(x)δ(x − y) + 3W (x)δ′(x − y)−
−(L(x)δ(x− y))′′ + δ′′′′(x− y)

{W (x),W (y)} =

(
2

3
L′(x)L(x) +W ′′(x) − 2

3
L′′′

)
δ(x − y) +

+

(
2

3
L2(x) + 2W ′(x)− 2L′′(x)

)
δ′(x− y)−

−2L′(x)δ′′(x− y)− 4

3
L(x)δ′′′(x− y) +

2

3
δ′′′′′(x− y)
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where the W �eld is not primary but if gauge �xing is hanged from the Wronskian to the highest weight

one [1, 2℄, whih is essentialy a shift, W̃ = W − 1
2L

′
, then the Poisson brakets for the new �elds show

that W̃ is a primary �eld with onformal weight 3 and that its braket with itself gives polinomial terms

in the energy-momentum tensor and happens to be idential to the Zamolodhikov algebra.

As the fundamental group of SL(3,R) is Z2 eah Ka-Moody orbit onsists of two onneted ompo-

nents. The

Tn(x) =




cos(nx) − sin(nx) 0
sin(nx) cos(nx) 0

0 0 1




(15)

transformation determines the non-trivial element in π1(SL(3,R)) if n is odd. This means that for n odd

Tn shifts between the two omponents, for n even Tn preserves them. This will result the interesting

onsequene that on some Ka-Moody orbits and on the orresponding W -leaves there will be in�nitely

many ritial points of the energy but at most one will be a minimum.

The exploration of the W -leaves will proeed in a ompletely analogous way as in the previous setion.

Sine the fundamental group has two elements there orresponds at least two sympleti leaves to eah

monodromy matrix but it is known from the ontext of homotopy types of non-degenerate urves on

projetive spae or sphere that in some ases this lassi�ation is not omplete as sometimes the onstraint

intersets one of the two omponents of the Ka-Moody orbits in two piees, whih will mean that to suh

a monodromy 3 leaves orrespond [6, 9℄.

A omplete list of onjugay lasses with the isotropy subgroups follows. Note that the isotropy sub-

groups have dimension 2, 4 or 8 so an (L,W ) pair an be left �xed by only 2, 4 or 8 linearly independent

W -transformations.

• Hyperboli lasses, the diagonalizable matries with 3 distint, real eigenvalues belong here.

H =








t 0 0
0 r 0
0 0 (tr)−1



∣∣∣∣∣∣
t, r 6= 0



 ≃ R

∗ × R
∗ ,

representatives:

M =




±e2πa 0 0
0 ±e2πb 0
0 0 e−2π(a+b)


 .

• Degenerate hyperboli lasses, the diagonalizable matries with 2 distint, real eigenvalues belong

here.

H =








t r 0
u v 0
0 0 (tv − ru)−1



∣∣∣∣∣∣
tv − ru 6= 0



 ≃ GL(2,R) ,

representatives:

M =




±e2πb 0 0
0 ±e2πb 0
0 0 e−4πb


 , b 6= 0 in the �+� ase .

• Ellipti lasses, those matries belong here whih are diagonalizable over the omplex numbers with

one real and a omplex and its onjugate eigenvalue.

H =








t −r 0
r t 0
0 0 (t2 + r2)−1



∣∣∣∣∣∣
t2 + r2 6= 0



 ≃ C

∗ ,

representatives:

M =




e2πb cos(2πω) −e2πb sin(2πω) 0
e2πb sin(2πω) e2πb cos(2πω) 0

0 0 e−4πb


 , ω ∈ (0, 1), ω 6= 1

2
.
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• 1. paraboli lasses, matries with one degenerate Jordan blok belong here.

H =








t r 0
0 t 0
0 0 t−2



∣∣∣∣∣∣
t 6= 0



 ≃ R× R

∗ ,

representatives:

M =




±e2πb 1 0
0 ±e2πb 0
0 0 e−4πb


 , b 6= 0 in the �+� ase .

• 2. paraboli lass.

H =








t r u
0 t 0
0 v t−2



∣∣∣∣∣∣
t 6= 0



 ≃ R

3 × R
∗ ,

representative:

M =




1 1 0
0 1 0
0 0 1


 .

• 3. paraboli lass.

H =








1 t r
0 1 t
0 0 1



∣∣∣∣∣∣
t, r ∈ R



 ≃ R

2 ,

representative:

M =




1 1 0
0 1 1
0 0 1


 .

• Exeptional lass.

H = SL(3,R), representative:M = 1 .

At the hyperboli, degenerate hyperboli and the 1. paraboli lass the signs are either both positive

or both negative.

The lassi�ation of W -leaves by the fundamental group is omplete in the �−� version of the hyper-

boli, the degenerate hyperboli, and the 2. paraboli ase. In the others the onstraint intersets one of

the two Ka-Moody omponents in two piee, more onretely in the exeptional ase n = 1 orresponds

to a separate leaf, while all other odd n orrespond to a seond, all even n to a third leaf. In the remaining

ases n = 0 onstitutes to a separate leaf, all other even n to a seond and all odd n to a third leaf [6, 9℄.

The given representatives possess logarithms exept for the 1. paraboli and the �−� version of the

hyperboli lasses. The latter ase was analyzed in [2℄ and the authors did not �nd onstant L and W
representatives for the orresponding leaf whih is not surprising as we have noted in setion 3 that if a

monodromy does not have a logarithm then the orresponding orbit an not have a onstant representative.

In the �−� ases the trik used for SL(2,R) will be adopted in the upper left blok, i.e. take the

opposite sign of the upper left 2 × 2 blok of M , all it M− whih possess a logarithm and then the

monodromy of g(x) = T 1

2

(x)M
x

2π

− will be M where T 1

2

(x) is the matrix of rotation by

x
2 in the upper left

blok. On the resulting matries the Tn matrix must be applied but note again that for n even we will

stay in the original omponent. The resulting matries should be transformed into the gauge �xed form

by a Ka-Moody transformation that determines the trivial element of Z2.

Let us analyze the stability of the ritial points on the W -leaves whih is important for determining

the lassial h. w. states. Substituting the gauge preserving in�nitezimal transformations into the (6)

diagonal element of the seond variation of the energy gives:

δδE =

2π∫

0

(
ε′1 ε′2

)



2
3

(
L− d2

dx2

)2

3W −
(
L− d2

dx2

)
d
dx

3W +
(
L− d2

dx2

)
d
dx

2
(
L− d2

dx2

)




(
ε′1
ε′2

)
dx

2π

supposed L and W are onstant, where ε1 and ε2 are the funtions generating the onformal and W -

transformations. This quadrati form is non-negative for any ε1 and ε2 if and only if

(L+ 1)2(4L+ 1) ≥ 27W 2
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holds for the onstant representatives, whih shows that L ≥ − 1
4 is neessary just as in the pure Virasoro

ase.

The straightforward alulation gives in the individual ases the following, where we have not both-

ered writing out expliitly the non-onstant representatives as they are quite ompliated and have no

transparent physial meaning.

• Hyperboli orbits. In the n = 0 and �+� ase one has onstant representatives whih an be obtained

by onstant Ka-Moody transformations:

L = a2 + ab+ b2, W = −ab(a+ b)

whih are all minima of the energy. If n 6= 0 there are only non-onstant L and W representatives.

• Degenerate hyperboli orbits. In this ase n is a half-integer, the lassi�ation is omplete by the

fundamental group and we have onstant representatives for the W -leaves:

L = 3b2 − n2, W = −2b(b2 + n2) .

Note again that these elements desribe 4 di�erent leaves, aording to whether n 6= 0 is an integer

or half-integer (the monodromies are di�erent) and whether n is even or odd in ase it is an integer,

or n − 1
2 is even or odd in ase n is a half-integer (same monodromy but di�erent Ka-Moody

omponent). Now any leaf possesses in�nitely many ritial points but only in the �−� ase will one
�nd a minimum and it only happens if n = 1

2 and b arbitrary and the minimum is degenerate. Note

that these lassial h. w. states are GL(2,R) invariant so they are good andidates for a true vauum

in CFT.

• Ellipti orbits. Here n is an integer and one obtains onstant representatives for any W -leaf:

L = 3b2 − (ω + n)2, W = −2b(b2 + (ω + n)2), ω ∈ (0, 1), ω 6= 1

2
. (16)

In these ases the lassi�ation by the fundamental group is not omplete, the onstraint intersets

the omponent orresponding to even n in two piee, but the W -leaf orresponding to odd n is

onneted and the (16) representatives determine the same W -leaf for all odd n whih means that

on these leaves the energy has in�nitely many ritial points. The ritial points are minima only if

n = 0 and |ω| < 1
2 and b arbitrary.

• 1. paraboli orbits. These have onstant representatives for n = 0 and they are given by

L = 3b2, W = −2b3 ,

whih are minima of the energy for arbitrary b.

• 2. paraboli orbits. None of these orbits have onstant representatives.

• 3. paraboli orbit. The onstant representative is

L = 0, W = 0,

whih is a minimum of the energy.

• Exeptional orbit. The leaf orresponding to this orbit has in�nitely many onstant representatives,

L = −n2, W = 0 ,

where n 6= 0 is an integer, but none of these are minima of the energy.

Note again that a onstant representative with non-negative seond variation of the energy is a lassial

h. w. state. One hopes to onstrut a onsistent highest weight representation spae on these leaves on

whih the quantized version of the W -algebra will at in CFT. The uniqueness of the vauum in CFT

is an important issue and we have established that if there is a ritial point of the energy on a leaf

then at most one will give rise to a vauum as at most one of the possibly many ritial points an be a

stable minimum. Those leaves whih do not ontain ritial points, that means on whih one an not �nd

a onstant representative, are physially less important as one an not assoiate a heighest weight type

representation of the W -algebra to these.
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7 Conlusions and outlook

We have analyzed in this paper the lassial geometry of W -algebras in the ontext of redued SL(n,R)
WZNW models. We split the WZNW �eld as

g(x, t) = g+(x+)g−(x−)

and onentrated on one hiral half of the originalWZNW theory only. As a onsequene of the splitting the

hiral theory inherited a global G-symmetry g+ → g+h , h ∈ G. Both the unonstrained and onstrained

urrents are invariant under this global symmetry, sine

J+ = (∂+g)g
−1 ,

that is the �eldsW2, . . . ,Wn are SL(n,R) invariant. We �xed this gauge symmetry, however, by demanding

g(0) = e and establishing a one to one orrespondene between the urrent J+ and the group valued �eld

g+. In the redued ase this means that the �elds W2, . . . ,Wn an be determined from the last row of

g , that is from a non-degenerate urve in Rn
as we have seen. If we had not �xed the gauge we would

have the global SL(n,R) gauge symmetry. The geometry of this symmetry was disussed in detail in [29℄.

Let's summarize their results. This symmetry ats naturally on the spae of non-degenerate urves and

the generators of the lassial W-algebra, that is the omponents of the onstrained urrents W2, . . . ,Wn

are invariant. Sine they an be built up from the non-degenerate urve as di�erential polynomials whih

are learly invariant with respet to the gauge symmetry they an be interpreted as �a�ne� invariants. It

was also shown that they are the only invariants and determine the urve modulo gauge transformations.

The Virasoro generator is a seond order invariant whih is alled �a�ne� urvature, the nextW -generator

an be interpreted as �a�ne� torsion, et.

Here we have onentrated on the lassi�ation of W -leaves and the issue of lassial h. w. states in

one hiral half. We an extend our results for the other hiral half of the theory sine analogous formulae

hold for them. Putting the two hiral halfs together the solutions of the redued WZNW models, namely

the Toda models, an be obtained. Our lassi�ation of the leaves leads to a lass�ation of the W -

inequivalent Toda solutions as it was desribed in detail in [17℄ for the global Liouville equation. Our

method in priniple is able to give expliit representatives on eah leaf whih fat was put in pratie

in the searh for lassial h. w. type representations. All these onsiderations were arried out for n = 2
and n = 3 whih orresponds to the Virasoro and Zamolodhikov algebra respetively. We have found

that there is at most one lassial h. w. state on any W -leaf and in the Zamolodhikov algebra ase also

determined the SL(2,R) (GL(2,R) in fat) invariant highest weight states whih are the best andidates

for a true vauum in CFT.

There is a very interesting and deliate question, how the lassial representions are related to the

quantum highest weight representations. One possible approah is to take the lassial equations of motion

and try to quantize them. This idea was used in [2, 3, 5℄ and they found that onsistent quantization results

in W -minimal models, where the lassial Toda �eld orresponds to the simplest nontrivial ompletely

degenerate representation of the quantum W -algebra. Later it was extended by taking higher dimensional

representions of the redued WZNW model to obtain other representions in the quantum ase in [8℄. It

is not lear however how this representions are related to the sympleti leaves of the lassial W -algebra

even in the simplest Virasoro ase, where only a onjeture from Witten gives some hint [18℄. A proper

desription would be the geometri quantization of the leaves lassi�ed in this paper. This is a di�ult

problem and is unsolved even in the �nite W -algebra ase exept for the simplest situation [7℄.
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