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Abstract

Using the reduced WZNW formulation we analyse the classical W orbit con-

tent of the space of classical solutions of the A2 Toda theory. We define the quan-

tized Toda field as a periodic primary field of theW algebra satifying the quantized

equations of motion. We show that this local operator can be constructed consis-

tently only in a Hilbert space consisting of the representations corresponding to

the minimal models of the W algebra.
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1. Introduction

The Toda field theories (TT) associated to various simple Lie algebras G have

received some interest recently, partly because the simplest of them, when the Lie

algebra is just A1, coincides with the Liouville theory. It has been known for a long

time that these theories are conformally invariant [1,2] in addition to being exactly

integrable [3]. Several methods have been suggested [1,2] to quantize them, and

all of these methods showed convincingly that the quantized versions are bona fide

conformal field theories (CFT). In a recent paper [4] it was shown that tuning the

coupling constant of these theories carefully one can reproduce the central charges

and highest weights of the various ‘minimal’ or ‘coset’ models.

Bilal and Gervais were the first to point out that through the Poisson brackets

the TT associated to G provide a realisation of the WG algebras [5]. The concept

of W algebras (i.e. extensions of the Virasoro algebra by higher, (half)integer spin

currents) was introduced in the study of CFT a few years ago [6]. TheWG algebras

provide a set of W algebras where the spins of the currents (Wi), generating WG,
are determined by the exponents (hi) of G: si = hi + 1. Using an essentially free

field quantization it was shown in [2] that the quantized TT provide a systematic

framework to construct the CFT-s that admit the WG algebras as symmetries.

It has been discovered recently [7] that the classical TT-s can naturally be

viewed as Hamiltonian reductions of the WZNW theories. This reduction is

achieved by imposing certain first class, conformally invariant constraints on the

Kac Moody (KM) currents. These constraints reduce the chiral KM phase spaces

to phase spaces carrying the chiral WG algebras as their Poisson bracket struc-

tures. The advantage of this reduced WZNW description is that it yields only a

restricted set of relevant degrees of freedom but with a rich algebraic structure as

well as giving a new way to describe the space of classical solutions. A natural

way to quantize these theories is to promote only the relevant degrees of freedom

to operators, trying to preserve – as much as possible – the boundary conditions

and the algebraic structure.



Recently we carried out this program for the Liouville theory [8] and – contrary

to our expectation – we found that this quantization becomes consistent only in

the ‘deep quantum’ domain, but not in the region which is – at least naively –

smoothly connected to the classical theory.

The aim of this paper is to show what we can gain both classically and in

the quantum theory from using the WZNW framework to describe the A2 TT

(which is the next simplest one after the Liouville theory). In the classical theory

we demonstrate that it enables us to gather information about the ‘classical WA2

algebra (W for short) representation’ (classical W orbit) content of the space of

classical solutions. In particular we shall be able to identify W orbits that are

classical analogues of the quantum highest weight representations (h.w.r.) both in

the singular and in the non singular sectors of the A2 TT.

In the quantum case we show that promoting only the generators of the W

symmetry and a single Toda field to operators is in a certain sense a minimal

quantization. This means that we require only the definition of the quantum

equivalent of this Toda field be periodic, and be consistent withW transformation

properties, the equation of motion and locality, but we do not ask for the presence

of any closing operator algebra or any quantum group structure. Yet we show that

when these requirements are supplemented by having a positive central charge as

well as a discrete spectrum ofW highest weights in the Hilbert space H, where our
operators act, then we are inevitably lead to the conclusion that H must consists of

W algebra representations corresponding to the (not necessarily unitary) minimal

models [9], that have no smooth semiclassical limit. Since the presence of a discrete

rather then a continuos spectrum of W highest weights in H corresponds to the

singular sector of the A2 TT we can say that quantizing it in the reduced WZNW

framework works nicely for the singular sector in the deep quantum domain.

The paper is organized as follows: In section 2. we review the description

of the classical A2 TT in the WZNW framework. Using this in section 3. we

investigate the classical W representation content of the space of classical solu-



tions. In section 4. we derive the quantum equation of motion for the Toda field

and determine the general form of the Hilbert space H, where it may act irre-

ducibly. We construct the local Toda field and obtain the precise form of H in

section 5. We make our conclusions in section 6. The three appendices, A, B,

C, contain some details about the way we determined the orbits corresponding to

the classical highest weights, the way we computed the various matrix elements of

Wn and the way we obtained the x→ x−1 transformation rule of the generalized

hypergeometric functions respectively.

2. Classical A2 Toda theory in WZNW framework

The A2 Toda theory describes the interaction of two real, periodic scalar fields

Φa(x0, x1) = Φa(x0, x1 + 2π); a = 1, 2 in two dimensions. Introducing light cone

coordinates x± = (x0 ± x1) their equations of motion have the form:

∂+∂−Φ
1 + 2eΦ

1− 1
2Φ

2

= 0 (1.1)

∂+∂−Φ
2 + 2eΦ

2− 1
2Φ

1

= 0 (1.2)

The corresponding Lagrangean is

L =
∑

a,b

1

2
Kab∂+Φ

a∂−Φ
b − 2

∑

a

exp(
1

2
KabΦ

b)

where Kab denotes the Cartan matrix of A2. It has been known for a long time

that this theory is conformally invariant; a property shared by all the other Toda

theories (TT). The conformal invariance can be seen from the Feigin Fuchs form

of the improved energy momentum tensor:

T±± =
∑

a,b

1

2
Kab∂±Φ

a∂±Φ
b − 2

∑

a

∂2±Φ
a

with T+− = 0. As a consequence T++ = L and T−− = L̄ satisfy ∂−L = 0, ∂+L̄ = 0

on shell. From ref.[5] we know that in the case of the classical A2 TT we have two

(commuting) copies of the WA2 algebra (W algebra for short) generated by the

spin two L(x+) = W1 and by a spin three current W (x+) = W2, together with



their right moving counterparts L̄(x−), W̄ (x−). (The W (x+) (W̄ (x−)) quantities

appearing here are somewhat complicated third order polynomials made of ∂+Φ
a,

∂2+Φ
a, ∂3+Φ

a, (resp. ∂−Φ
a, ∂2−Φ

a, ∂3−Φ
a) [5,10] but in the following we shall not

need their actual form.)

Recently a unified description of classical W algebras associated to the TT-s

was given [7] by exploiting the connection between TT and constrained WZNW

models. In this WZNW description the constraints, that select the TT in the

space of WZNW currents, generate gauge transformations (left moving upper and

right moving lower triangular Kac Moody (KM) transformations) and the WG
algebra is nothing, but the algebra of gauge invariant polynomials made of the

constrained KM current and its derivatives. One advantage of this approach lies

in the fact, that the brackets between the the Wi-s – which are induced by the

canonical Poisson brackets of the original currents of the WZNW model – can be

computed readily using some appropriate KM transformations that preserve the

form of the constrained current [7]. In the A2 case, when this “form” preserved by

the special KM transformation was the “highest weight” one [7] rather than the

more familiar “Wronskian” one we found that

δL = δW1 =
[
a1(W1)

′

+ 2a
′

1W1 − 2a
′′′

1

]
+

[
2a2(W2)

′

+ 3a
′

2W2

]
(2)

δW = δW2 =
[
a1(W2)

′

+ 3a
′

1W2

]

+
[
a2
(
−1

6
(W1)

′′′

+
2

3
W1(W1)

′)
+ a

′

2

(
−3

4
(W1)

′′

+
2

3
(W1)

2
)

− 5

4
a

′′

2 (W1)
′ − 5

6
a

′′′

2 W1 +
1

6
a
(V )
2

]
(3)

where a1,2(x
+) are the infinitesimal functions characterising the ‘pure conformal’

and ‘pure W ’ parts of the complete W transformations. Eq.(3) shows that W (x+)

transforms as a primary field of weight 3 under conformal transformations while its

change under the pure W transformation depends only on the energy momentum

tensor L =W1. Eq.s (2,3) can be converted to the brackets between the Wi-s by

δWi =
∑

j

∫
dy1aj(y){Wi(x),Wj(y)}|x0=y0 (4)



In the case of A2 the reduced WZNW framework also associates to the solutions

of the TT an SL(3) valued WZNW field, g, of rather restricted form, containing

all the information. This approach identifies the fundamental and natural vari-

ables of the A2 TT as the lower right corner element, u(x0, x1) = u2(x
0, x1) =

exp(−1
2Φ

2(x0, x1)), of this matrix g, plus the (chiral) Wi (W̄i) generators of the

W algebra, since the entire g field can be described in their terms. The explicit

form of g is:

g =




∂2−∂
2
+u+H ∂2−∂+u− 1

2L∂+u ∂2−u− 1
2Lu

∂−∂
2
+u− 1

2
L̄∂−u ∂−∂+u ∂−u

∂2+u− 1
2 L̄u ∂+u u


 (5)

where H = −1
2L∂

2
+u − 1

2 L̄∂
2
−u + 1

4 L̄Lu. u1 = exp(−1
2Φ

1) is given as the lower

right subdeterminant of g and this definition is equivalent to eq.(1.2). On the

other hand, detg = 1 – which is an integral of the (linear) equations of motion for

the u(x0, x1) field

Du = ∂3+u− L(x+)∂+u−
(
W (x+) +

1

2
L(x+)

′)
u = 0 (6)

(plus a similar one, D̄u = 0, in the other light cone variable with L→ L̄, W → W̄ )

– implies eq.(1.1). Regarding u, L, W , and L̄, W̄ as fundamental variables places

the ‘singular Toda solutions’ (when u1 and u2 may have some zeroes) and the ‘non

singular’ ones (when u1 and u2 have no zeroes) on an equal footing: both of them

are described by a globally well defined and regular g matrix if L(x+), W (x+)

(L̄(x−), W̄ (x−)) are non singular, periodic functions [7]. Using the previously

mentioned form preserving KM transformation to implement the infinitesimal W

transformations it is easy to see that u(x0, x1) is a primary field of the W algebra

since
δu =a1(x

+)∂+u− a
′

1u

+ a2(x
+)(∂2+u−

2

3
L(x+)u)− 1

2
a

′

2∂+u+
1

6
a

′′

2u
(7)

(u transforms in an entirely analogous way under the right moving algebra gener-

ated by L̄, W̄ .) If some non singular, periodic L, W (L̄, W̄ ) are given, then the u



field can be constructed from the solutions of the eq.(6) and its chiral partner as

u(x0, x1) =

3∑

k=1

ψk(x
+)χk(x

−) (8)

Here ψk(x
+) (χk(x

−)) stand for the three linearly independent solutions ofDu = 0

(D̄u = 0) normalized by

1 =

∣∣∣∣∣∣

∂2φ1 ∂2φ2 ∂2φ3
∂φ1 ∂φ2 ∂φ3
φ1 φ2 φ3

∣∣∣∣∣∣
, φ = ψ, χ, ∂ = ∂+, ∂−

3. Classical representations of the W algebra

Treating u(x0, x1) and the currents of theW algebra as fundamental variables

opens up a new possibility to analyze the space of classical solutions of A2 TT. As

eq.(2,3) and (7) were obtained from a KM transformation preserving the form of

the constrained current, the transformed quantities, u+ δu, L+ δL, W + δW will

also solve eq.(6), i.e. the W algebra transforms classical solutions of A2 TT into

another solutions. Therefore the basic object we need is the family of solutions

connected by W transformations: the so called orbit of the W algebra. (In more

mathematical terms these W orbits are nothing but the simplectic leafs of the

second Gelfand Dikii bracket [11], which is equivalent to eq.(4) [12].) Clearly

these orbits may be viewed as the classical representations of the W algebra, and

to say something about the representation content of the classical solution space

one has to find the invariants characterizing the orbits. According to a recent

study [12] there are just two types of invariants for the W orbits: a continuous

one, the monodromy matrix M , and a discrete one, describing the homotopy

classes of certain non degenerate curves associated to the solutions of Dψ = 0.

The appearence of the monodromy matrix can be understood in the following

way: though u(x0, x1) must be periodic for x1 → x1 + 2π the solutions of the

chiral d.e., (6), may be quasiperiodic

ψk(z + 2π) =Mklψl(z) (9)



if the left and right monodromy matrices are not independent of each other. Fur-

thermore eq.(7) shows that the W transformations act linearly on ψ thus they

obviously preserve M . Of the homotopy classes it was shown [12] that in the most

general case there are just three of them – in marked contrast to the Liouville case,

when the discrete invariant could take infinitely many different values counting the

(conserved) number of zeroes of the Liouville analogue of the u field [13,14].

Once we can characterize the orbits – the classical representations of the W

algebra – the next question is to determine which of them may correspond to

highest weight representations (h.w.r.). In the (quantum) h.w.r. the expectation

value of the energy operator is bounded below and it attains its minimum value

for the highest weight state, which is a simultaneous eigenvector of both L0 and

W0 [6]. Therefore it is natural to expect that a W orbit would correspond to a

h.w.r. if the total energy,
2π∫
0

L(z)dz, stays bounded below as we move along the

orbit. Furthermore we also expect, that it also contains a solution of eq.(6) (the

“classical h.w.” vector) with constant L, W , such that the total energy has at least

a local minimum there, i.e.
2π∫
0

L(z)dz increases if we move away from this solution

along the orbit.

To investigate the representation content of the classical solution space and

in particular to see what parts of it may correspond to h.w.r. we adopted the

following procedure [11]: first we picked a monodromy matrix M , and looked for

such ψk-s that satisfy eq.(9) and would give constant L0-s andW0-s through eq.(6).

(Technically we determined L0 and W0 using only two ψk-s and found the third

one from the normalization condition.) Then, in the second step, by iterating the

transformation leading to eq.(2,3) we determined if ∆L = E(a1, a2)− L0 – where

E(a1, a2) =
2π∫
0

L(z)dz – is positive for all (periodic) a1 and a2 or not. We call a

W orbit a potential classical h.w.r. if ∆L is positive for all a1,2 (for details see

Appendix A).

So far we analysed only orbits with diagonalizable monodromy matrices in the

generic case, i.e. when all the parameters appearing are different and nonvanishing.



Since M ∈ SL(3), its eigenvalues are either all real or it has a complex conjugate

pair of them and a real one. In the former case a large class ofM -s can be described

by

M = diag
(
eΛ2π, em2π, e−(Λ+m)2π

)
Λ 6= m (10)

where Λ and m are arbitrary real parameters. The ψk(x
+) satisfying eq.(9) with

this M and yielding the constant energy and W densities

L0 = Λ2 +Λm+m2 W0 = −mΛ(m+ Λ) (11)

are

ψ1(x
+) = NeΛx+

; ψ2(x
+) = Nemx+

; ψ3(x
+) = Ne−(Λ+m)x+

;

N =
[
(m− Λ){mΛ+ 2(m+ Λ)2}

]−1/3
(12)

Since the curve associated to these ψk-s has at most two zeroes this solution is in

the ‘non oscillatory’ homotopy class in the classification of [12]. It is important to

notice, that L0 > 0 for all non vanishing Λ and m. From the analysis of E(a1, a2)

around this solution we concluded that this type of orbits can be classical h.w.r.

for all values of Λ and m. The right moving sector can be obtained from eq.(11,12)

by some trivial substitutions if the monodromy matrix there has the same form

as eq.(10) but with Λ→ Λ̂ and m→ m̂. Using these chiral solutions in eq.(8) we

see that u(x0, x1) will be periodic if Λ̂ = Λ and m̂ = m, and then

u(x0, x1) = NN̂
(
e2Λx0

+ e2mx0

+ e−(2Λ+m)x0)

i.e. the A2 Toda sector corresponding to these orbits is the non singular one.

A large class of monodromy matrices having a real eigenvalue as well as a

complex conjugate pair can be described by

M(Λ, ρ) =




eΛ2πcos(ρπ) eΛ2πsin(ρπ) 0
−eΛ2πsin(ρπ) eΛ2πcos(ρπ) 0

0 0 e−2Λ2π


 (13)

where Λ and ρ > 0 are real parameters. We note that M(Λ, ρ+ 2K) = M(Λ, ρ),

(K integer), thus the domain of ρ containing only inequivalent M -s is 0 < ρ < 2.



Furthermore if ρ is integer ( 6= 0), then M has three real eigenvalues (in general a

doubly degenerate one a non degenerate one) thus some of these cases correspond

to the Λ→ m limit of eq.(10). We also note, that for Λ = 0, ρ = 2K, M becomes

the identity matrix.

The ψk-s satisfying eq.(9) with this M and yielding constant energy and W

densities now have the following form:

ψ1(x
+) = ÑeΛx+

sin
ρx+

2
; ψ2(x

+) = ÑeΛx+

cos
ρx+

2
; ψ3(x

+) = Ñe−2Λx+

Ñ =
[
−ρ(9

2
Λ2 +

ρ2

8
)
]−1/3

(14)

while the L0 and W0 densities are

L0 = 3Λ2 − ρ2

4
; W0 = −2Λ(Λ2 +

ρ2

4
) (15)

The solution of eq.(6) given by eq.(14,15) is more interesting than the one described

by eq.(11,12). First of all we note that now – unlike in the previous case – the

energy density may be negative, L0 < 0, if |Λ| < ρ/2
√
3. In the 0 < ρ < 2 domain

the curve associated to this solution is again in the “non oscillatory” homotopy

class, but the possibility of keeping M fixed while shifting ρ by an even integer

may correspond to describing solutions with the same M but belonging to the

‘higher’ homotopy classes. Precisely this happens for Λ = 0 when ρ = 2, 4, 6,

since in these cases eq.(14,15) give the three representative solutions of the three

homotopy classes belonging to M = Id as discussed in [12].

Analysing the behaviour of E(a1, a2) around this solution we concluded that

this type of orbits can be classical h.w.r. for all values of Λ if ρ < 1. This is

surprising since it implies that the orbit containing the ‘classical SL2 invariant

vacuum’ (Λ = 0, ρ = 2) cannot be a highest weight one. This result is important

as it implies that the quantum theory may have no smooth semiclassical limit if it

contains the SL2 invariant vacuum in a (quantum) highest weight representation.

(One can see in the following way that eq.(14,15) with Λ = 0, ρ = 2 indeed



describe the invariant classical vacuum : computing the brackets between the Tn,

Wn Fourier components of L(x+) and W (x+) from eq.(2-4) one finds that the

central term in {Tn, Tm} is of the form c
12
n3δn,−m with c = 24. To convert it

into the canonical c
12n(n

2 − 1)δn,−m form we have to make a shift in T0(≡ L0)

by c/24 = 1, and after this shift the solution with Λ = 0, ρ = 2 will be the one

of vanishing energy and W density. This argument also shows that all the orbits

characterized by M -s in the form of eq.(10) will have an energy density bounded

below by 1.)

The right moving χk(x
−) solutions can again be obtained by some obvious

substitutions from eq.(14,15) if we assume that the right moving monodromy ma-

trix differs from eq.(13) only in the parameter replacments Λ→ Λ̂, ρ→ ρ̂. Using

these ψk-s and χk-s in eq.(8) to construct u(x0, x1) we conclude that u will be

periodic if Λ̂ = Λ and ρ+ ρ̂ = 2J with J integer. From the actual form of u

u(x0, x1) = Ñ ̂̃N
(
e2Λx0

cos[
ρ− ρ̂
2

x0 +
ρ+ ρ̂

2
x1] + e−4Λx0)

we see that if Λ 6= 0 then – depending on the sign of Λ – it has zeroes either for

x0 > 0 or for x0 < 0. This means that the number of zeroes of u may change in

time, but nevertheless their mere existence implies that this type of orbits are in

the ‘singular sector’ of the solution space of the A2 TT.

Clearly for orbits characterized byM -s having the form of eq.(13) ρ is a kind of

angular variable, thus we expect that in the quantum theory its eigenvalues would

be discrete. Through eq.(15) this would imply that the Hilbert space corresponding

to these orbits contains a discrete spectrum of W algebra highest weights.

In passing we emphasize that it is a rather special property of the orbits

described so far that they contain representatives (the ψk(x
+)-s) yielding constant

L0 and W0. When we changed M in eq.(10) slightly

M = diag
(
−eΛ2π, −em2π, e−(Λ+m)2π

)
Λ 6= m

we could construct only ψk(x
+)-s giving periodic and singularity free L(x+) and

W (x+) (provided |Λ−m| < 1) but we were unable to find ψk(x
+)-s giving constant



L0 and W0. The same remark applies to orbits with monodromy matrices in the

form of eq.(10) but belonging to the higher homotopy classes. Based on these

we conjecture that these orbits would correspond to W representations which are

neither highest nor lowest weight ones. Finally we remark that we did not inquire

the orbits described by non diagonalizableM -s the reason being that the analogous

case for the Liouville theory proved to be rather uninteresting [14].

4. The quantum equation of motion and the representation

space for the Toda field

Motivated by the succes we gained from using the WZNW framework in de-

scribing the solution space of A2 TT we envisage a quantization procedure that

promotes only the relevant, natural degrees of freedom u, L, W , L̂, Ŵ to oper-

ators. This seems to be the main difference between the earlier approaches [1,2]

devoted to quantizing the (A2)TT and the present one. Certainly our u operator

is equivalent to some of the vertex operators constructed in [2] applying a modified

free field quantization, but our framework is different. We are not going to use free

fields thus we shall impose the quantized equation of motion – whose parameters

we determine from its covariance – to define our Toda field, while the equivalent

of this equation was verified in [2] for the particular vertex operator. Furthermore

we are mainly interested in quantizing the A2 TT in a domain which would cor-

respond to the singular sector of the classical theory. In our approach we intend

to maintain both the algebraic structure and the boundary conditions found clas-

sically. Technically we shall use short distance operator product expansions (and

complexified coordinates) which are closer to the spirit of CFT than the method

of canonical quantization.

The Hilbert space where our operators act is a big, reducible representation

of the direct product of the left and right (quantum) W algebras H =WL ⊗WR.

WL (WR) – which are supposed to contain h.w.representations only – are spanned



by the Laurent coefficients of the currents L(z), W (z):

L(z) =W1(z) =
∑

n

Lnz
−n−2 W (z) =W2(z) =

∑

n

Wnz
−n−3 (16)

(L̄n, W̄n are defined in an analogous way, from now on we shall give the formulae

for the left moving sector only if it can lead to no confusion.) If φ(z, z̄) is any local

field from the operator algebra then the W j
n (W 1

n = Ln, W
2
n =Wn) operators act

on it according to [6]

W j
nφ(z, z̄) =

∮

z

dζ

2π
(ζ − z)n+jWj(ζ)φ(z, z̄) (17)

Ln, Wn satisfy the quantum version of the W algebra [6]:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m

[Ln,Wm] = (2n−m)Wn+m (18)

[Wn,Wm] =
c

3 · 5!(n
2 − 4)(n2 − 1)nδn+m + b2(n−m)Λn+m

+ (n−m)
( 1

15
(n+m+ 2)(n+m+ 3)− 1

6
(n+ 2)(m+ 2)

)
Ln+m

where the central charge, c, is a free parameter, Λn is the composite operator built

from the Ln-s

Λn =

+∞∑

k=−∞

: LkLn−k : +
1

5
xnLn

x2l = (1 + l)(1− l) x2l+1 = (l + 2)(1− l)

and b2 = 16/(22 + 5c). The algebra given by eq.(18) in terms of commutators

has the same structure as the one obtained from eq.(2-4) on the level of Poisson

brackets of Tn and Wm; the only difference being that some of the constants got

changed as a result of quantization. Indeed from eq.(2-4) we found b2class = 16/(5c)

with c = 24 and xclass2l = xclass2l+1 = 2, after rescaling the classical Wn by
√

5/2 to

guarantee that the ratio of the central terms in {Tn, Tm} and {Wn,Wm} is the

same as in eq.(18).



Of the u(z, z̄) we assume that it is a (periodic) primary field of the left (and

right) W algebra(s):

Lnu(z, z̄) = 0 n > 0 L0u(z, z̄) = ∆u(z, z̄)

Wnu(z, z̄) = 0 n > 0 W0u(z, z̄) = ωu(z, z̄) (19)

Please note that here ∆ and ω may differ from their classical values encoded in

eq.(7), but we assume that u(z, z̄) is a spinless field ∆ = ∆̄. The crucial assumption

about u(z, z̄) is that it satisfies the ‘quantized version’ of the equation of motion,

eq.(6) (plus its chiral counterpart). This quantized version differs from the classical

one in two respects: first, since we are dealing with opeators now, all the products

appearing in eq.(6) should be normal ordered, and in addition, as a result of

renormalization, even the coefficients of the various terms may be different from

their classical values. Interpreting the normal ordered products : L(z)u(z, z̄) :,

:W (z)u(z, z̄) : etc. as subtracting the singular terms from the ordinary ones plus

using eq.(19,17) we finally get that u(z, z̄) should satisfy:

κL3
−1u− L−2L−1u− αW−3u− βL−3u = 0 (20)

where the κ, α and β parameters are yet to be determined. The motivation to

assume that the quantization we are considering keeps the form of the classi-

cal equation of motion and changes only the various coefficients comes from two

sources: we saw that this happened with the defining relations of the W algebra

in eq.(18), and this was found in the case of complete, unrestricted WZNW theory

also in ref.[15].

Eq.(20) clearly has the form of a null vector. The requirement, that fixes

the ∆, ω, κ, α and β parameters, is that this grade 3 null vector should be

covariant under the W algebra i.e. denoting the left hand side of eq.(20) as χ,

χ should be annihilated by all Ln, Wn, for n > 0. Because of the commutation

relations, eq.(18), for this it is sufficient if L1χ = W1χ = L2χ = 0. Analysing

these conditions we found that they lead to a consistent system of equations for



the parameters only if u(z, z̄) generates two independent null vectors, one on grade

one:

2∆W−1u− 3ωL−1u = 0 (21.1)

and one on grade two:

AL2
−1u+BL−2u+ CW−2u = 0 (21.2)

where A/C and B/C are somewhat complicated functions of ∆ and ω:

A/C = − 3

2(1−∆)

[
− ω

4∆
+

∆

6ω

]
; B/C =

3

2(1−∆)

[
ω − 3ω

2∆
+

∆(2∆ + 1)

9ω

]
.

The consistency of these two null vectors with eq.(18,19) (i.e. their covariance)

determines ∆ and ω as functions of c. In describing these functions (and the rest

of the parameters) we found it extremely useful to introduce a new real parameter,

Q, in place of c: c = 2(3− 4/Q)(3− 4Q); then ∆ and ω become:

∆ =
4Q

3
− 1 ω± = ±∆

3

√
2

3

√
5Q− 3

5− 3Q
(22)

This means that for any Q we get two u fields with the same conformal weight

but opposite ω values; we shall denote by u(z, z̄) (ũ(z, z̄)) the field with ω+ (resp.

ω−). Eq.(22) also implies that u is a

(
1 1
1 2

)
field in the classification of ref.[9].

Using these parameters in the equations expressing the covariance of eq.(20) we

got

κ = Q−1 α± = ± 1√
6

√
(5Q− 3)(5− 3Q) β =

1

2

(Q
3
+ 1

)
(23)

Since c is invariant under the substitution Q → Q−1 we get two new solutions

from eq.(22,23) by making this change there; thus the total number of u fields

belonging to a fixed c is four.

We can understand the appearence of the fields, u and ũ, degenerate in ∆

but having opposite ω-s in the following way: The algebra described by eq.(18) is

left invariant by the transformation Ln → Ln, Wn → −Wn. Denoting by M the

operator implementing this automorphism: MLnM−1 = Ln;MWnM−1 = −Wn,



we find from eq.(19) that L0MuM−1 = ∆MuM−1; W0MuM−1 = −ωMuM−1.

Therefore we can write ũ(z, z̄) =Mu(z, z̄)M−1 expressing the fact that u and ũ

provide a representation of the automorphism. Therefore in the following we shall

treat u and ũ on an equal footing.

Looking only at the central charge and the conformal weights of the solutions

described by eq.(22,23) the obvious classical limit (c → ∞, ∆ → −1) would be

Q →− 0. However the whole Q < 0 (c > 98) domain is ruled out if we insist on

having real ω and α, since this restricts Q to 3/5 ≤ Q ≤ 5/3 (which even shrinks

to 3/4 ≤ Q ≤ 4/3 if we demand c > 0). Though it may seem surprising that this

entirely chiral condition forces us into the ‘deep quantum’ domain, 0 < c < 2, it is

in fact in accord with the Kac determinant for the W algebra [16]: from the latter

one also finds that in the c > 98 domain a

(
1 1
1 2

)
field with a conformal weight

given by eq.(22) can be degenerate only for purely imaginary ω-s. Therefore, with

real ω, the quantization we propose, can be carried out only for 0 < c < 2.

The u(z, z̄) (ũ(z, z̄)) operator acting in H is known if we know its matrix

elements. Since we assumed that WL (WR) consist of h.w.r. only it is enough if

we know the matrix elements of u between highest weight states
∣∣∣ h h̄
w w̄

〉
:

W j
n

W̄ j
n

∣∣∣ h h̄
w w̄

〉
= 0 n > 0 j = 1, 2 (24)

L0

L̄0

∣∣∣ h h̄
w w̄

〉
=
h
h̄

∣∣∣ h h̄
w w̄

〉
W0

W̄0

∣∣∣ h h̄
w w̄

〉
=
w
w̄

∣∣∣ h h̄
w w̄

〉

From conformal symmetry alone it follows that

〈
H H̄
Ω Ω̄

∣∣∣u(z, z̄)
∣∣∣ h h̄
w w̄

〉
= G(H, h, . . .)zH−h−∆z̄H̄−h̄−∆̄

where the constant amplitude, G, that depends on all the parameters character-

izing the h.w. states and the u field is left undetermined. However the equation

of motion, eq.(20), together with the W0 part of eq.(19) restrict G; indeed sand-

wiching eq.(20) and the W0 part of eq.(19) between h.w. states and using the

freedom to deform the contour in eq.(17) together with eq.(21,24) we found after



a somewhat lengthy computation that G vanishes unless y = h + ∆ − H and Ω

satisfy (for details see Appendix B):

−κy(y + 1)(y + 2)+(y + 2)(y + h) − α
{
w + ω

[ 3

2∆
y − 2

(
y(y + 1)β−1−1

+ (y + h)β−2
)]}

+ (β − 1)(y + 2h) = 0

(25)

Ω = −w − ω + ω
{ 3

∆
y −

(
y(y + 1)β−1−1 + (y + h)β−2

)}
(26)

where ωβ−1−1 (ωβ−2) denote the A (B) coefficients in eq.(21.2) when C is scaled

to −1. These eqations become tractable if instead of h and w characterizing the

h.w. states we introduce two new parameters a and b:

h(a, b) =
Q

3
(a2 + b2 + ab)− (Q− 1)2

Q

w(a, b) =
1

9

√
2

3

Q2(b− a)(2b+ a)(2a+ b)√
(5Q− 3)(5− 3Q)

(27)

The vacuum state is described by avac = bvac = ±(1 − Q−1) while the a, b pa-

rameters of the u field are a
(1)
u = −b(2)u = 1 − Q−1, b

(1)
u = −a(2)u = 2 − Q−1 (the

parameters of the ũ field are obtained from these expressions by interchanging a

and b). Substituting eq.(27) into eq.(25,26) one gets that the u(z, z̄), ũ(z, z̄) fields

have nonvanishing transitions only if the A,B parameters of the final state and

the a, b parameters of the initial one are related as

A, B =
b− 1, a+ 1
b+ 1, a
b, a− 1

A, B =
b+ 1, a− 1
b− 1, a
b, a+ 1

(28)

respectively. To understand the meaning of these selection rules it is important

to realise that the scalar product between the (chiral) h.w. states we are using is

〈d, c|a, b〉 ∼ δacδbd. Therefore eq.(28) can be interpreted as saying that u (ũ) maps

the state |a, b〉 to |a′, b′〉 where a′ = B and b′ = A. This means that by acting on

a (h.w.) state with u (ũ) we can shift a and b (in appropriate combinations) by

±1. Interestingly, if a and b were integers characterizing the Dynkin labels of an

SL(3) irrep [a, b], then the a′ and b′ obtained from eq.(28) in the case of the u field



would have the same form as the Dynkin labels of irreps appearing in the tensor

product 3⊗ [a, b] (3̄⊗ [a, b] for the ũ field). This is the quantum equivalent of the

classical property, that the u field was a specific component of an SL(3) triplet.

From the chiral partner of the equation of motion, eq.(20), one finds an entirely

analogous selection rule for the ā, b̄ (Ā, B̄) parameters characterizing the transfor-

mation properties of the h.w.s. under the right moving W algebra. A connection

between a, b and ā, b̄ parameters can be established by requiring u(z, z̄), ũ(z, z̄) to

be periodic. Indeed looking at the ‘diagonal’ transitions (
〈
b+ 1 a
b̄+ 1 ā

∣∣∣u(z, z̄)
∣∣∣ a b
ā b̄

〉

etc.) one immediately obtaines that u and ũ can be periodic only if

ā = a− (2N +M)Q−1, b̄ = b+ (N −M)Q−1 (29)

where N and M are integers. It is also easy to see that the periodicity of u and

ũ in the ‘non – diagonal’ transitions (
〈
b+ 1 a
b̄ ā− 1

∣∣∣u(z, z̄)
∣∣∣ a b
ā b̄

〉
etc.) together

with the diagonal ones would imply that Qa and Qb are integers. However, as we

shall see later, this possibility is unacceptable.

Therefore, putting everything together, in the following we choose the Hilbert

space, where our u and ũ operators act irreducibly as

H =
∑

k,l

Wa0+k,b0+l ⊗ W̄a0+k,b0+l (30)

where Wa0+k,b0+l (W̄) is the full left (right) Verma modul corresponding to the

h.w.s.
∣∣∣ a0 + k b0 + l
a0 + k b0 + l

〉
. (Choosing N = M = 0 in in eq.(29) guarantees the

absence of ‘non – diagonal’ transitions and this choice will be forced upon us if

— eventually — we want to represent the other two operators – whose ∆ and ω

were obtained by the Q → Q−1 substitution from eq.(22) – as periodic fields in

the same Hilbert space.) The summation over the integers k, l in eq.(30) is either

infinite or restricted to a subset, but in any case the Hilbert space, (30), contains at

most a discrete infinity of h.w. modules. We emphasize, that this choice is a very

natural one in view of the selection rules, eq.(28), but is not the only possibility,

since we could start with a Hilbert space containing a continuum spectrum of W



algebra highest weights. We chose eq.(30) since it naturally corresponds to the

set of singular solutions described in sect.3 and may contain the SL2 invariant

vacuum
∣∣∣ avac bvac
avac bvac

〉
.

In the Hilbert space (30) the u(z, z̄), ũ(z, z̄) operators are characterized by

three types of constant amplitudes Gi(a, b) (G̃i(a, b)) i = 1, ..3:

G1(a, b) = 〈b, a− 1|u(1, 1)|a, b〉; G2(a, b) = 〈b+ 1, a|u(1, 1)|a, b〉

G3(a, b) = 〈b− 1, a+ 1|u(1, 1)|a, b〉; G̃1(a, b) = 〈b, a+ 1|ũ(1, 1)|a, b〉 (31)

G̃2(a, b) = 〈b− 1, a|ũ(1, 1)|a, b〉; G̃3(a, b) = 〈b+ 1, a− 1|ũ(1, 1)|a, b〉

where |a, b〉 is a short notation for
∣∣∣ a b
a b

〉
. The automorphism,M, transforming

u and ũ into each other relates the constant amplitudes of the ũ field to those of

u:

G̃1(a, b) = G2(b, a); G̃2(a, b) = G1(b, a); G̃3(a, b) = G3(b, a) (32)

Exploiting the fact that u(z, z̄) is a real field reduces further the number of inde-

pendent constant amplitudes since it implies

G2(a, b) = G∗
1(b+ 1, a); G∗

3(a, b) = G3(b− 1, a+ 1) (33)

From eq.(31-33) we see that both the u(z, z̄) and the ũ(z, z̄) fields are completely

parametrized if we give the constant amplitudes G1(a, b), G3(a, b) for all a, b-s

belonging to H.
5. Construction of the local Toda fields

These constant amplitudes will be further restricted by requiring the u, (ũ)

operators to be mutually local. This can be studied by analysing the behaviour of

the 4-point functions; i.e. the expectation values of the products of two field op-

erators u(z, z̄) u(ζ, ζ̄) (u(z, z̄) ũ(ζ, ζ̄)) between h.w. states. Conformal symmetry

implies that these 4-point functions have the form:

〈
H H̄
Ω Ω̄

∣∣∣u(z, z̄)u(ζ, ζ̄)
∣∣∣ h h̄
w w̄

〉
= (zζ)λ(z̄ζ̄)λ̄fuu(x, x̄)



where λ = 1
2 (H−h)−∆, x = ζ/z, x̄ = ζ̄/z̄. The fũũ(x, x̄), fuũ(x, x̄) and fũu(x, x̄)

functions are defined in an analogous way. The locality of the u (ũ) operators

requires that the functions describing the expectation values of the products of

identical operators be symmetric under x → x−1: fuu(x, x̄) = fuu(x
−1, x̄−1) (

fũũ(x, x̄) = fũũ(x
−1, x̄−1)), while for the functions describing the expectation

values of the products of different operators it means that they should go into

each other under x→ x−1: fuũ(x, x̄) = fũu(x
−1, x̄−1). On the other hand eq.(20)

implies that each of the f(x, x̄) functions satisfies an – in general different – 3-

rd order linear differential equation in both x and x̄. The constant amplitudes

determine the linear combination coefficients in the solutions of this d.e. through

the boundary conditions at x = x̄ = 0 (z → ∞) where only the h.w. states

contribute: Indeed inserting a complete system of states between the uu (uũ)

operators and taking the z → ∞ (x → 0) limit when the descendant states are

suppressed we get schematically:

〈AB|u(z, z̄)u(ζ, ζ̄)|ab〉 →
∑

c,d

〈AB|u(z, z̄)|cd〉〈dc|u(ζ, ζ̄)|ab〉(1 + . . .) =

= (zz̄ζζ̄)λ
∑

c,d

G(AB; cd)G(dc; ab)(xx̄)h(c,d)−
1
2 (h(A,B)+h(a,b))(1 + . . .) (34)

where the summation runs over those highest weight states whose presence between

〈AB| and |ab〉 is allowed by the selection rules, the dots stand for a polynomial of x,

x̄ representing the contribution of the descendant states, andG(AB; cd) (G(dc; ab))

denotes the constant ampitude appropriate for the transition |cd〉 → 〈AB| (|ab〉 →
〈dc|). Thus the requirement of locality can be translated into a system of equations

for the constant amplitudes. As we shall see this system, when supplemented by

some minor and very natural additional assumptions, determines them completely.

In the following we first derive the 3-rd order differential equations and analyze

their general properties then we turn to a detailed investigation of the various

transitions distinguished by the number of intermediate states in eq.(34). Because

the automorphism M transforms u and ũ into each other there are only two



essentially independent f functions: fuu(x, x̄) and fuũ(x, x̄) say. Applying the

same method we described in Appendix B for the three point function we found

that both fuu(x, x̄) and fuũ(x, x̄) satisfy an equation of the form

κ(I)− (II)− (β − 1)(III)− α(IV) = 0 (35)

where for both functions

(I) = (λ− 2)(λ− 1)λf − 3x(λ− 2)(λ− 1)f ′ + 3x2(λ− 2)f ′′ − x3f ′′′ (36)

(II) =− 2f
( ∆

(1− x)3 + h
)
+

( ∆

(1− x)2 + h
)
[λf − xf ′]

− 1

(1− x)2
(λ
x
f + f ′

)
− (x− 1)f ′ + λ(1 +

1

x
)f − x2(1 + 1

1− x )f
′′

+ xf ′[2(λ− 1)− 1

1− x ] + fλ[
λ

1− x − (λ− 1)]

(37)

(III) = −2f
( ∆

(1− x)3 + h
)
− 1

(1− x)2
(λ
x
f + f ′

)
− (x− 1)f ′ + λ(1 +

1

x
)f (38)

and h = h(a, b). The difference between the equations of fuu and fuũ comes from

the matrix element of W−3 appearing in the fourth term of eq.(35): in the case of

fuu it is

(IV) =wf +
ω

(1− x)3 f +
3ω

2∆

[
λf

( x

1− x +
1

(1− x)2
)
+ f ′

( 1

(1− x)2 − (1− x)
)]

+ ωβ−1−1
[
λ(λ− 1)

( 1

1− x − 2
)
f + x2f ′′

( 1

1− x − 2
)
+ 2λ

x

1− xf
′+

4x(λ− 1)f ′
]
+ ωβ−2

[
∆f

x2 − 2(1− x)
(1− x)3 + hf

( 1

1− x − 2
)
+

( 1

1− x−

3
)
[(x− 1)f ′ − λ(1 + 1

x
)f ] + λf

2− x2 − 2/x

(1− x)2 + f ′x
3 − 2(1− x)
(1− x)2

]

(39)

(here w = w(a, b)), while for fuũ we got:

(IV) =wf − ω

(1− x)3 f −
3ω

2∆

[
λf

3− 3x+ x2

(1− x)2 + xf ′ 1 + x− x2
(1− x)2

]

−ωβ−1−1
[
x2f ′′

( 1

1− x + 2
)
+ 2xf ′

( λ

1− x − 2(λ− 1)
)
+ λ(λ− 1)f

3− 2x

1− x
]

−ωβ−2
[
∆f

( 1

(1− x)3 +
1

1− x
)
+ hf

( 1

1− x + 2
)
+ xf ′

( 1

(1− x)2 + 2
)

+ λf
(
−1− x2

(1− x)2
)]

(40)



(here ω = ω+ in eq.(22). Once we obtained the equation for fuũ for a given

transition from eq.(35-38,40) we can get that of fũu for the same transition by

simply changing the sign of the αwf term.)

It is no surprise that the differential equations for fuu and fuũ have three

singular points at x = 0, x = 1 and x = ∞. First we discuss the properties of

the singularity at x = 1. Since x → 1 corresponds to z → ζ we expect them

to contain some information about the short distance behaviour of the uu (uũ)

operator products. Therefore they should depend only on the operators involved

but should be independent of the external states (|ab〉, 〈AB|). In the case of fuu

from eq.(35-39) we found that the indices characterizing the solution around x = 1

(fuu ∼ (1− x)ν) are:

ν1 = 1− 4Q

3
, ν2 =

2Q

3
, ν3 = 2 +

2Q

3
(41)

These νi-s imply the appearance of three operators Oi i = 1, .., 3 with conformal

dimensions

∆1 =
4Q

3
− 1 = ∆, ∆2 =

10Q

3
− 2, ∆3 =

10Q

3
(42)

in the operator product expansion (OPE) of uu. The appearance of ∆ among

the ∆i-s means that O1 may correspond to either u or ũ. It is interesting to

observe, that ∆2 has also the form of h(a, b) in eq.(27) with a = ±(1 − Q−1),

b = ±(3 − Q−1), thus O2 is a new W primary field propping up in the OPE of

uu. On the other hand ∆3 differs from ∆2 by a positive integer indicating that

the corresponding operator may be a (W ) descendant of O2. Repeating the same

analysis for the fuũ function we found that the indices are now given by:

µ1 = 2− 8Q

3
, µ2 =

Q

3
, µ3 = 1 +

Q

3
(43)

These indices imply that the three operators Ui, i = 1, .., 3 appearing in the uũ

OPE have the following conformal dimensions:

∆1 = 0, ∆2 = 3Q− 2, ∆3 = 3Q− 1. (44)



It is natural to assume that U1 is nothing but the identity operator. ∆2 can again

be written in the form of h(a, b) in eq.(27) with a = b = ±(2 − Q−1), thus U2

is again a new W primary field emerging in the uũ OPE, while U3 can again be

interpreted as a descendant of U2. We note that one pair of indices is differing by

an integer for both fuu and fuũ and this raises the danger of one of the fundamental

solutions at x = 1 being logarithmic instead of polynomial [17]. We come back to

this problem soon.

As we mentioned earlier the various transitions defining the various types of

fuu and fuũ functions can be classified according to the number of intermediate

states in eq.(34). In fact we can use eq.(34) together with the selection rules,

eq.(28), to determine all the non vanishing 4-point functions built on the initial

state |ab〉 and collect the transitions leading to the same final state 〈AB|. The six

uu transitions (fuu functions) belong to two groups: three of them – when A,B

are b, a−2; b+2, a and b−2, a+2 respectively – have just one intermediate state,

while the other three – when A,B are b, a+1; b− 1, a and b+1, a− 1 respectively

– have two intermediate states. Of the seven uũ transitions the diagonal one, i.e.

when 〈AB| = 〈ba|, is a class of its own by having three intermediate states, while

all the others (with A,B being b+ 1, a+ 1; b − 2, a+ 1; b − 1, a− 1; b− 1, a+ 2;

b+ 2, a− 1 and b+ 1, a− 2 respectively) have only one intermediate state.

Our strategy to determine the functions belonging to transitions with one

and two intermediate states is the following: first we analyse the exponents of x

(x̄) appearing in eq.(34) then combining them with the known indices at x = 1

(eq.(41,43)) we construct some trial functions, whose validity we check on the

computer using the symbolic formula manipulating program FORM [18]. Once

we completed this we derive from the requirement of locality the equations for the

constant amplitudes.

In case of the three fuu functions with one intermediate state (IS) we found

that the exponent of x (x̄) in eq.(34) is just −Q/3, i.e. is independent of a, b.

Combining this with the expression (1− x)2Q/3 corresponding to ν2 in eq.(41) we



get a trial function

(
x−1(1− x)2

)Q/3(
x̄−1(1− x̄)2

)Q/3
(45)

which, in addition to exhibiting the singular solutions at x = 0 and x = 1 is

also symmetric under x → x−1. Using FORM to substitute this expression into

the corresponding equations we checked that it really solves them. Thus when

multiplied by the appropriate products of G-s, eq.(45) yields a complete solution

to the three fuu functions with one IS without any restriction on the constant

amplitudes.

In case of the six fuũ functions with one IS the exponents of x in eq.(34)

(−Q(1 + b − a)/6, −Q(1 + 2a + b)/6, −Q(1− 2b − a)/6, each of them appearing

twice) do depend on a, b. Furthermore computing the exponents for the ũu

product between the same states we found that in each case they differ from the

previous ones as a result of the different IS but only in replacing a and b by −a,
−b respectively. Therefore using the expression (1− x)Q/3 corresponding to µ2 in

eq.(43) we get trial functions

σ0(x)σ0(x̄)(xx̄)
−

Q

6 (b−a); σ0(x)σ0(x̄)(xx̄)
−

Q

6 (2a+b); σ0(x)σ0(x̄)(xx̄)
Q

6 (2b+a)

(46)

(where σ0(x) =
(
x−1(1−x)2

)Q/6
) that again exhibit the correct behaviour at x = 0

and x = 1. Furthermore for these trial functions the x→ x−1 substitution amounts

to the replacement a → −a, b → −b. Having checked that these trial functions

do solve the corresponding equations we multiplied them with the appropriate

combinations of constant amplitudes and found the following three independent

equations

G3(a+ 1, b)G2(b, a) = G2(b− 1, a+ 1)G3(a, b) (47.a)

G3(a, b− 1)G1(b, a) = G1(b− 1, a+ 1)G3(a, b) (47.b)

G1(a, b− 1)G1(b, a) = G1(b, a− 1)G1(a, b) (47.c)

from the requirement of locality, fuũ(x, x̄) = fũu(x
−1, x̄−1).



In case of the three uu transitions with two IS fuu starts at x = 0 as a linear

combination of two terms. Motivated by this we assumed, that at x = 1 it is

also a linear combination of two terms, namely those, whose singular behaviour is

given by ν1 and ν2 in eq.(41). Therefore computing the exponents in eq.(34) we

constructed our trial functions as a sum of terms (1−x)1−4Q/3xexponentF (α, β, γ; x)

where F (α, β, γ; x) is the usual hypergeometric function, analytic around x = 0.

To every exponent we determined α, β and γ from demanding two things: first

that the singularities of the sum at x = 1 be given by ν1 and ν2 and second that

the members of the sum be transformed into each other’s linear combination under

x → x−1. Putting everything together the trial fuctions for the three fuu-s with

two IS can be written in the following compact form:

〈b, a+ 1|uu|ab〉 : σ1(x)σ1(x̄)
[
G3(a, b+ 1)G2(a, b)ψb(x)ψb(x̄)

+G2(a+ 1, b− 1)G3(a, b)ψ−b(x)ψ−b(x̄)
] (48.a)

〈b− 1, a|uu|ab〉 : σ1(x)σ1(x̄)
[
G1(a+ 1, b− 1)G3(a, b)ψa(x)ψa(x̄)

+G3(a− 1, b)G1(a, b)ψ−a(x)ψ−a(x̄)
] (48.b)

〈b+ 1, a− 1|uu|ab〉 : σ1(x)σ1(x̄)
[
G1(a, b+ 1)G2(a, b)ψa+b(x)ψa+b(x̄)

+G2(a− 1, b)G1(a, b)ψ−a−b(x)ψ−a−b(x̄)
] (48.c)

where σ1(x) =
(
x−1(1− x)2

) 1
2−

2Q
3 and

ψb(x) = x
1
2 [Q(b−1)+1]F (Q[b− 1] + 1, 1−Q, 1 +Qb; x).

The trick we used to check the validity of these expressions on the computer was

to express the second and third derivatives of the hypergeometric functions F in

terms of F ′ and F using the hypergeometric differential equation and to verify

that the coefficients of F ′ and F vanish separately in eq.(35-39).

The well known x → x−1 transformation properties of the hypergeometric

functions (see e.g. [19]) imply that:

ψb(x) = B1(b)
xQ(b−1)+1

(−x)Q(b−1)+1
ψb(1/x) +B2(b)

x1−Q

(−x)1−Q
ψ−b(1/x) (49)



where B1(b) =
Γ(1+Qb)Γ(−Qb)
Γ(1−Q)Γ(Q) ; B2(b) =

Γ(1+Qb)Γ(Qb)
Γ(Q[b−1]+1)Γ(Q[b+1]) . Using eq.(49) in the

expressions in eq.(48) to implement the x→ x−1 symmetry we found that for this

G1(a+ 1, b− 1)G3(a, b)

G1(a, b)G3(a− 1, b)
= φ(a);

G3(a, b+ 1)G∗
1(b+ 1, a)

G∗
1(b, a+ 1)G3(a, b)

= φ(b) (50.a)

G1(a, b+ 1)G∗
1(b+ 1, a)

G1(a, b)G
∗
1(b+ 1, a− 1)

= φ(a+ b) (50.b)

must hold for the constant amplitudes. Here

φ(b) = −Γ2(−Qb)Γ(Q[b+ 1])Γ(1 +Q[b− 1])

Γ2(Qb)Γ(Q[1− b])Γ(1−Q[b+ 1])
=
s(b+ 1)

s(b− 1)

Γ2(−Qb)Γ2(Q[b+ 1])

Γ2(Qb)Γ2(Q[1− b])

with s(x) = sin(πQx).

After some straightforward algebra one can show that the solution of eq.(33),

(47) and (50) can be written as:

|G3(a, b)|2 = N
Γ(Qb)Γ(−Q[b− 1])Γ(Q[a+ 1])Γ(−Qa)

Γ(1−Qb)Γ(1 +Q[b− 1])Γ(1−Q[a+ 1])Γ(1 +Qa)
(51)

|G1(a, b)|2 =M
Γ(Q[a+ b])Γ(−Q[a+ b− 1])Γ(−Q[a− 1])Γ(Qa)

Γ(1−Q[a+ b])Γ(1 +Q[a+ b− 1])Γ(1 +Q[a− 1])Γ(1−Qa)
(52)

where N = N(Q) and M = M(Q) are undetermined functions of Q. (Very

precisely they still could depend on a and b through such combinations that stay

invariant under a, b→ a± 1, b± 1.)

The diagonal uũ transition (i.e. when the final state is 〈ba|) needs special

care since now – unlike in the previous cases – all three singularities at x = 1 may

contribute raising the danger of a logarithmic singularity. Therefore we determined

the indices of the differential equation one gets from eq.(35-38,40) with λ = −∆
at x = 0 and x =∞ first. At the origin we got

ν
(0)
1 =

Q

3
(1 + b− a); ν

(0)
2 =

Q

3
(1 + b+ 2a); ν

(0)
3 =

Q

3
(1− 2b− a) (53)

which nicely coincide with the exponents computed from eq.(34) – as is expected

– while at infinity we found

ν
(∞)
1 =

Q

3
(1 + a− b); ν

(∞)
2 =

Q

3
(1 + 2b+ a); ν

(∞)
3 =

Q

3
(1− b− 2a) (54)



Combining the indices in eq.(43), (53) and (54) we see that our differential equation

is of the Fuchs type. At x = 0 (x = ∞) its solution will be free of logarithms –

thus it may correspond to our boundary conditions, eq.(34) – if none of the index

pairs is differing by an integer [17], i.e. if neither Qa nor Qb is an integer. If this is

the case then we don’t have to worry about the potential logarithmic singularity

at x = 1, since in the lack of an additional branch point it must be absent. It is

also encouraging to observe that Qa, Qb not being integers also guarantees that all

the hypergeometric functions appearing in eq.(48) are indeed well defined power

series.

We solved the differential equation for the diagonal fuũ by realising that

factoring out (1 − x)Q/3xν
(0)
i i = 1, ..3 from fuũ in eq.(35-38,40) one gets the

differential equation

[
x
d

dx

2∏

j=1

(x
d

dx
+ βj − 1)− x

3∏

k=1

(x
d

dx
+ αk)

]
v = 0 (55)

satisfied by the generalized hypergeometric function 3F2 = v [19]:

3F2

(
α1 α2 α3

β1 β2

∣∣x
)
=

∞∑

n=0

α
(n)
1 α

(n)
2 α

(n)
3

β
(n)
1 β

(n)
2

xn

n!

where α
(n)
i = Γ(αi+n)

Γ(αi)
. To every exponent ν

(0)
i we determined the αi, βi parameters

as functions of a, b and Q by matching the coefficients of the various terms we

got from the computer to that of coming from eq.(55). Therefore the complete

diagonal transition has the form:

〈ba|uũ|ab〉 = (zz̄ζζ̄)−∆σ0(x)σ0(x̄)
[
|G1(a+ 1, b)|2I1(a, b|x)I1(a, b|x̄)

+ |G3(b, a)|2I2(a, b|x)I2(a, b|x̄) + |G1(b, a)|2I3(a, b|x)I3(a, b|x̄)
] (56)

where

I1(a, b|x) = xQ( 1
2+

1
3 [2a+b])

3F2

(
Q Q(1 + a+ b) Q(1 + a)

1 +Q(a+ b) 1 +Qa

∣∣x
)

(57.a)

I2(a, b|x) = xQ( 1
2+

1
3 [b−a])

3F2

(
Q Q(1 + b) Q(1− a)

1 +Qb 1−Qa
∣∣x
)

(57.b)



I3(a, b|x) = xQ( 1
2−

1
3 [2b+a])

3F2

(
Q Q(1− a− b) Q(1− b)

1−Q(a+ b) 1−Qb
∣∣x
)
. (57.c)

(The diagonal fũu function between the same states can be obtained from eq.(56),

(57) by replacing a and b.) In Appendix C we derive the x→ x−1 transformation

rule for the generalized hypergeometric functions 3F2; using them and the form of

the constant amplitudes given in eq.(51), (52) after a somewhat lenghty calculation

we found that fuũ(x, x̄) = fũu(x
−1, x̄−1) is satisfied for the diagonal transition if

N(Q) and M(Q) appearing in G3(a, b) (resp. G1(a, b)) are equal M(Q) = N(Q),

and are indeed independent of a, b.

Clearly to determine the actual Q dependence of M we have to impose some

sort of normalization in addition to u(z, z̄), ũ(z, z̄) being local operators. We may

require that the dimension zero operator appearing at x = 1 in the uũ product

be the true identity operator, or, equivalently, that the operator with conformal

dimension ∆ emerging at x = 1 in the uu product be the correctly normalized u

or ũ. We chose the technically simpler second possibility. Comparing the initial

and final states in eq.(48) to the selection rules it is clear that O1 can be identified

with ũ and requiring that the residues of the (1 − x)ν1 singularity in the three

expressions in eq.(48) be the properly normalized matrix elements of ũ we found

that

M(Q) = N(Q) =
( Γ(Q)Γ(2− 2Q)

Γ(1−Q)Γ(2Q− 1)

)2

(58)

Thus we see that requiring u and ũ to be local operators together with this nor-

malization condition indeed completely determines the constant amplitudes. We

may think of the identifications U1 ∼ Id, O1 ∼ ũ as the quantum equivalents of the

classical conditions detg = 1 and exp(−1
2Φ

1) being the lower right subdeterminant

of g respectively: just as in the classical case they are automatically satisfied as

a consequence of the equations of motion, apart from an overall normalization.

With this remark we end the constructuion of the quantized Toda fields u and ũ,

and in the following we analyze the properties of this solution.

In the first step we rewrite |G1|2 and |G3|2 in a form more suitable for our



purposes:

|G3(a, b)|2 = Nπ4S1(Q, a, b)
(
Γ(Qb)Γ(−Q[b− 1])Γ(Q[a+ 1])Γ(−Qa)

)2

|G1(a, b)|2 =Mπ4S2(Q, a, b)
(
Γ(Q[a+ b])Γ(−Q[a+ b− 1])Γ(−Q[a− 1])Γ(Qa)

)2

(59)

where

S1(Q, a, b) = s(Qb)s(Q[b− 1])s(Qa)s(Q[a+ 1])

S2(Q, a, b) = s(Q[a+ b])s(Q[a+ b− 1])s(Qa)s(Q[a− 1]) (60)

The expressions on the left hand side of eq.(59) should be non negative by def-

inition. However, because of the sine factors, the expressions on the right hand

side may change sign as a and b run through their domain in eq.(30). Of course

our construction of the (local) u and ũ operators makes sense only if this does

not happen; i.e. if for no a, b belonging to H is either S1 or S2 negative. So our

remaining task is to find out the values of Q and the domain of a, b guaranteeing

this. We emphasize that the condition that the modulus squared of a complex

number be non negative has nothing to do with the possible (non)unitarity of the

W representation built on the h.w. state |ab〉.
Looking at eq.(59,60) we note that in the case of irrational Q-s starting from

a state |a0b0〉 (with Qa0 6=integer, Qb0 6=integer) we can never ‘stop’ again, i.e.

applying u and ũ sufficiently many times to |a0b0〉 we can change the a, b parame-

ters of the final state to differ from a0 and b0 by any integer without ever finding

a vanishing G1 or G3. This clearly poses a problem since then the sine factors in

eq.(59,60) will sooner or later change sign contradicting the positivity of |G1|2 and

|G3|2.
If Q is rational; Q = r/s with r, s > 0 coprime integers, then it is conceivable

that starting from a h.w. state |a0b0〉, after applying several times u and ũ, we

arrive at a final state for which some of the constant amplitudes vanish; i.e. in this

case – at least in principle – we may be able to ‘stop’. However this possibility raises
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the danger of having a-s and b-s in H with the unacceptable property Qa =integer,

Qb =integer. (In addition in this case we also have to worry about some of the Γ

function’s arguments becoming a negative integer.) We may resolve this problem

if we can find a domain in the (a, b) plane such that the constant amplitudes that

would correspond to transitions leading out of the domain vanish on its border,

but inside (or on the border) there are no points for which Qa or Qb is integer.

This may happen as the the six possible transitions from |ab〉 listed in eq.(28) are

characterized by different values of G1 and G3. Pictorially they can be represented

as on Fig.1. (This means e.g. that the transition keeping b fixed while increasing

a by 1 is characterized by G∗
1(a+ 1, b).)

The domains where all of our conditions are met are triangular ones with two

sides being paralel to the a and b axis (a ≡ a0 = 1− L(s/r); b ≡ b0 = 1−K(s/r)

where K,L ≥ 1 are integers also satisfying K + L ≤ r − 1) and the third one

inclining at 135◦ to the positive a axis (a + b + 1 = s(r − K − L)/r). These

domains are characterized by the two positive integers K,L with K + L ≤ r − 1,

and the set of a-s and b-s belonging to the domain have the form

a = 1 + l − Ls
r
; b = 1 + k −Ks

r
; 1 + l + 1 + k ≤ s− 1 (61)

where l and k are non negative integers. This means that for each Q = r/s

and K,L we get a Hilbert space HKL where the local u and ũ operators act



irreducibly and are defined consistently if we take the sum in eq.(30) to run over

the a, b-s in eq.(61). H11 is the Hilbert space containing the SL2 invariant vacuum

with avac = bvac = 1 − (s/r). The ‘largest’ Hilbert space where u and ũ are

defined consistently is the union of the irreducible HKL-s: H =
K+L≤r−1∑

1
⊕HKL.

Using eq.(61) and (27) it is easy to see that H consists of nothing but the W

representations characterising the (not necessarily unitary) minimal models [9]

belonging to c(Q = r/s). We also remark that the set of a, b-s in eq.(61) and

the maximal H are identical to the ones we obtain if we quantize the Toda fields

with the other (Q → Q−1) choice for ∆ and ω. More precisely using the a-s and

b-s one gets from eq.(61) by keeping l and k fixed while leting K and L run in

K,L ≥ 1; K + L ≤ r − 1, from eq.(30) we obtain a Hilbert space Hkl providing a

representation for the other two Toda fields. The whole H is obtained if we insist

on the simultaneous presence of both types of Toda fields.

6. Conclusions

In this paper we investigated the A2 TT describing it in the reduced WZNW

framework. In the classical theory working out this framework in the less familiar

‘highest weight gauge’ [7] we identified the relevant variables as a single Toda field,

u(z, z̄) and the generators of the classicalW symmetry. Using them we showed that

the space of classical solutions can be divided into classical representations of the

W algebra, the W orbits, that are characterized by the monodromy matrix and a

discrete invariant. We determined two types of monodromy matrices guaranteeing

that the orbits belonging to them are of the classical highest weight type, in

addition to lying in the singular and non singular sectors of the A2 TT respectively.

Surprisingly, we found that the orbit corresponding to the classical SL2 invariant

vacuum is not of the highest weight type.

In the quantum theory we promoted only the Toda field u(z, z̄) and the gen-

erators of symmetries to operators. Working in a Hilbert space containing only

at most a discrete infinity of W highest weight representations we defined u(z, z̄)

as a periodic primary field satisfying the quantized equation of motion. We con-



structed this u(z, z̄) operator – and its partner, ũ(z, z̄), generated from it by the

automorhism of the algebra – in two steps: first by deriving the selection rules

we determined the types of constant amplitudes parametrising them, then by

imposing their locality through the 4-point functions we determined these con-

stant amplitudes completely. As a result we learned that these local Toda fields

can be defined consistently if the Q parameter determining the central charge as

c(Q) = 2(3 − 4/Q)(3 − 4Q) is rational and the Hilbert space is the collection of

W representations corresponding to the minimal models. We find these results in-

teresting as we arrived at them without ever demanding the presence of a closing

operator algebra or any quantum group structure.

Summarizing we can say that the reduced WZNW framework gave new in-

sights both in the classical and in the quantum versions of the A2 TT. In the

quantum case we also see that to go beyond the minimal models we have to drop

some of our assumptions. The obvious possibilities are to replace the assumption

about the representation content of the Hilbert space by something else and/or to

drop one of the basic axioms of CFT, namely the equivalence between states and

fields, that underlined our computations.
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Appendix A

Search for orbits of the classical highest weight type.

We argued in sect.3 that the classical analogues of the quantum highest weight

states are solutions of eq.(6) with constant L and W such that the value of
2π∫
0

L(z)dz is bounded below along the orbit. Thus the classical highest weight

state must correspond to at least a local minimum of this integral.

Let’s define

l =

2π∫

0

L(z)dz, w =

2π∫

0

W (z)dz



If L and W are constant (resp. L0, W0) then the transformation rules of the

classical WA2 algebra ( eq.(2-3)) simplify

δL = [2a,1L0 − 2a,,,1 ] + 3a,2W0 (A.1)

δW = 3a,1W0 + [
2

3
a,2W

2
0 −

5

6
a,,,2 W0 +

1

6
a
(V )
2 ] (A.2)

Using these to compute the changes in l and w we see that δl = 0 as well as δw = 0

( since a1 and a2 are periodic ) i.e. the points of constant L and W are stationary

points of l and w along the orbit.

Being a classical highest weight state requires also

δδl ≥ 0 (A.3)

We call this the stability condition.

We can calculate the concrete formula for δδl by iterating the WA2 transfor-

mation laws ( in the second step we have to use the full eq.(2-3) as after the first

step L and W are no longer constants ). Discarding total derivative terms we find

δδl =

2π∫

0

(a,1δL+ a,2δW )dz

which can be rewritten as

δδl =

2π∫

0

( a,1 a,2 )

(
2L0 − 2 d2

dz2 3W0

3W0
2
3L

2
0 − 5

6
d2

dz2 + 1
6

d4

dz4

)(
a,1
a,2

)
dz (A.4)

This is a quadratic form in terms of a,1 and a,2 and the stability condition amounts

to its positive definity. We take an orthogonal basis in the space of ( a,1,a
,
2 ) of the

form (
a,1
a,2

)
= qeinz , n 6= 0

In the subspace of given n the matrix appearing in eq.(A.4) takes the form

M(L0,W0) =

(
2L0 + 2n2 3W0

3W0
2
3L

2
0 +

5
6n

2 + 1
6n

4

)



The positive definity means that the eigenvalues of this matrix

λ1,2(L0,W0, n) = a+ b±
√

(a+ b)2 − 4ab+ 9W 2
0 ,

where a and b are

a = L0 + n2, b =
1

12

[
(2L0 + n2)2 + L0n

2
]
,

must be positive for all n. Consequently

a+ b > 0, 4ab > 9W 2
0 for all | n |≥ 1

The first of these conditions is satisfied iff L0 > −1.The second one is satisfied for

all values of n iff it holds for n = 1. Therefore we have the following inequalities

for stability

L0 > −1, (L0 + 1)(4L2
0 + 5L0 + 1) > 9W 2

0 (A.5)

Taking the solutions described by eq.(10-12) we obtain that they are stable for all

possible values of Λ and m. In case of the solutions given in eq.(13-15) the second

condition in (A.5) leads to the inequality

(1− y)
[
(3x)2 + x(

y

2
+ 2) +

1

(12)2
(y − 4)2

]
> 0, where y = ρ2, x = Λ2 (A.6)

This implies that the values of Λ are not restricted and the first condition in

eq.(A.5) is satisfied as well if ρ < 1. If ρ ≥ 1 (A.6) does not hold for any value of

Λ . This implies, as mentioned in sect.3, that the classical SL2 invariant vacuum,

which corresponds to Λ = 0, ρ = 2, cannot be a classical highest weight state.

Appendix B

W matrix elements

In this appendix we illustrate the method we used to compute the various

matrix elements of W−3 on the example of W−3u between highest weight states:

〈HΩ|W−3u(z)|hw〉 = lim
z1→∞

lim
z3→0

z2H1 〈ΦH(z1)W−3u(z)Φh(z3)〉. (B.1)



(We determined the matrix elements of Ln in the standard way [20].) In (B.1)

ΦH(z1)and Φh(z3) denote two (chiral) W primary fields characterized by the L0;

W0 eigenvalues H, Ω and h, w respectively, generating the highest weight states

from vacuum. We shall use the integral representation

WnΦ(z) =

∮

z

dξ

2πi
(ξ − z)n+2W (ξ)u(z)

and the freedom to deform the contour away from z to z1 and z3. For this we have

to compute W (ξ)ΦH(z1) and W (ξ)Φh(z3).

The singular terms in the operator product have the form:

W (ξ)ΦH(z) =
ΩΦH(z)

(ξ − z)3 +
AH(z)

(ξ − z)2 +
BH(z)

(ξ − z) (B.2)

where AH(z) = W−1ΦH(z) and BH(z) = W−2ΦH(z) denote the W descendandts

of the primary field ΦH(z). It is important to realise that the irreducible W

representation generated from ΦH(z) may contain several Virasoro primary fields

among the W descendants. If the representation built on ΦH(z) is not degenerate

on the first grade then the two fields L−1ΦH(z) W−1ΦH(z) are not related to each

other. Therefore defining ΞH+1(z) as

AH(z) =
3Ω

2H
L−1ΦH(z) + ΞH+1(z) (B.3)

we see using eq.(18) that ΞH+1 is a Virasoro primary field

L0ΞH+1(z) = (H + 1)ΞH+1(z), LnΞH+1(z) = 0 n > 0.

In the same way we have

BH = AL−2ΦH(z) +BL2
−1ΦH(z) +DL−1ΞH+1(z) + ΨH+2(z) (B.4)

where A, B and D are constants and

L0ΨH+2(z) = (H + 2)ΨH+2, LnΨH+2(z) = 0 n > 0.



(Because u is in an irreducibile representation degenerate on the first and second

grade its associated fields are null, i.e. Ξ∆+1(z) = 0 and Ψ∆+2 = 0 respectively.)

Since ΞH+1(z) and ΨH+2(z) are Virasoro primary fields, conformal symmetry

restricts the z dependence of the 3-point functions they enter.

Deforming the contour in eq.(B.1) to z1 and z3 and substituting (B.2), (B.3)

and (B.4) into (B.1) and taking the z1 →∞ limit we get:

〈HΩ|W−3u(z)|hw〉 = w
G(H, h, ..)

zy+3
+

1

z2
〈h|u(z)|Ah〉+

1

z
〈H|u(z)|Bh〉 (B.5)

where

〈H|u(z)|Ah〉 = lim
z1→∞

lim
z3→0

z2H1 〈ΦH(z1)u(z)Ah(z3)〉

We shall determine the unknown 〈H|u(z)|Ah〉 and 〈H|u(z)|Bh〉 functions by
computing 〈H|W−1u(z)|h〉 and 〈H|W−2u(z)|h〉. Repeating the same steps that

lead from (B.1) to (B.5) we have

〈H|W−2u(z)|h〉 = −〈H|u(z)|Bh〉 (B.6)

and

〈H|W−1u(z)|h〉 = z〈H|u(z)|Bh〉 − 〈H|u(z)|Ah〉. (B.7)

Since the W representation built on u(z, z̄) is characterized by the null vectors

(21.1), (21.2) in (B.6) and (B.7) we can write

W−2u(z) = ωβ−1−1L2
−1u(z) + ωβ−2L−2u(z) (B.8)

and

W−1u(z) =
3ω

2∆
L−1u(z). (B.9)

Substituting (B.6) and (B.7) into (B.5) using (B.8) and (B.9) we get:

〈H|W−3u(z)|h〉 =
G(H, h, ..)

zy+3

{
w + ω(

3

2∆
y − 2β−2(y + h)− 2β−1−1y(y + 1)

}



Appendix C

In this appendix we derive the x→ x−1 transformation rule for the generalized

hypergeometric functions 3F2:

3F2

(
α1 α2 α3

β1 β2

∣∣z
)
=

∞∑

n=0

α
(n)
1 α

(n)
2 α

(n)
3

β
(n)
1 β

(n)
2

zn

n!
(C.1)

To derive the transformation rule we use an integral representation wich is a

straightforward generalization of the corresponding one for the hypergeometric

functions:
3∏

i=1
Γ(αi)

2∏
j=1

Γ(βj)
3F2

(
α1 α2 α3

β1 β2

∣∣z
)
=

=
1

2πi

i∞∫

−i∞

3∏
i=1

Γ(αi + s)Γ(−s)
2∏

j=1
Γ(βj + s)

(−z)sds

(C.2)

In (C.2) |arg(−z)| < π and the contour of integration is chosen in such a way that

the poles of Γ(αi + s), Γ(βj + s) lie to its left while the poles of Γ(−s) lie to its

right. We also assume that none of αi is a negative integer. Deforming the contour

to encircle the poles of Γ(−s) we indeed recover (C.1). However deforming it to

encircle the poles of Γ(αi + s) we get

3F2

(
α1 α2 α3

β1 β2

∣∣z
)
=

=
3∑

i=1

Ai(−z)−αi
3F2

(
αi 1 + αi − β1 1 + αi − β2

1 + αi − αi+1 1 + αi − αi+2

∣∣z−1
)

where the i+ 1, i+ 2 indeces are understood only mod 3 and

Ai =

Γ(β1)Γ(β2)
∏
j 6=i

Γ(αj − αi)

2∏
j=1

Γ(βj − αi)
∏
j 6=i

Γ(αj)

.



References

[1] J.L. Gervais and A. Neveu : Nucl. Phys. B224 (1983) 329.

E. Braaten, T. Curtright, G. Ghandour and C. Thorn: Phys. Lett. B125

(1983) 301.

P. Mansfield : Nucl. Phys. B222 (1983) 419.

[2] A. Bilal and J.L. Gervais : Nucl. Phys. B318 (1989) 579.

[3] A.N. Leznov and M.V. Savaliev: Lett. Math. Phys. 3 (1979) 489; Comm.

Math. Phys. 74 (1980) 111.

[4] T. Hollowood and P. Mansfield: Phys. Lett. B226 (1989) 73.

[5] A. Bilal and J.L. Gervais : Phys. Lett. B206 (1988) 412, Nucl. Phys. B314

(1989) 646.

[6] A.B. Zamolodchikov : Theor. Math. Phys. 65 (1985) 347.
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