6 research outputs found

    Structures and Anti-Inflammatory Evaluation of Phenylpropanoid Derivatives from the Aerial Parts of Dioscorea polystachya

    No full text
    Seven undescribed phenylpropanoid constituents, including three new bibenzyl derivatives (1–3) along with four new benzofuran stilbene derivatives (4–7), were isolated from the aerial parts of Dioscorea polystachya. The structures of these compounds were elucidated using a combination of spectroscopic analyses, including UV, IR, HRESIMS, 1D, and 2D NMR. Further, all the compounds were evaluated on the anti-inflammatory activity for their inhibition of nitric oxide (NO) production by RAW 264.7 macrophages cells, and some of them (1–3 and 6) displayed inhibitory activity with IC50 values in the range of 9.3–32.3 μM. Moreover, compound 3 decreased the expression of iNOS in Western blot analysis, suggesting compound 3 is mediated via the suppression of an LPS-induced NF-κB inflammasome pathway

    Structures and Anti-Inflammatory Evaluation of Phenylpropanoid Derivatives from the Aerial Parts of <i>Dioscorea polystachya</i>

    No full text
    Seven undescribed phenylpropanoid constituents, including three new bibenzyl derivatives (1–3) along with four new benzofuran stilbene derivatives (4–7), were isolated from the aerial parts of Dioscorea polystachya. The structures of these compounds were elucidated using a combination of spectroscopic analyses, including UV, IR, HRESIMS, 1D, and 2D NMR. Further, all the compounds were evaluated on the anti-inflammatory activity for their inhibition of nitric oxide (NO) production by RAW 264.7 macrophages cells, and some of them (1–3 and 6) displayed inhibitory activity with IC50 values in the range of 9.3–32.3 μM. Moreover, compound 3 decreased the expression of iNOS in Western blot analysis, suggesting compound 3 is mediated via the suppression of an LPS-induced NF-κB inflammasome pathway

    Caching Joint Shortcut Routing to Improve Quality of Service for Information-Centric Networking

    No full text
    Hundreds of thousands of ubiquitous sensing (US) devices have provided an enormous number of data for Information-Centric Networking (ICN), which is an emerging network architecture that has the potential to solve a great variety of issues faced by the traditional network. A Caching Joint Shortcut Routing (CJSR) scheme is proposed in this paper to improve the Quality of service (QoS) for ICN. The CJSR scheme mainly has two innovations which are different from other in-network caching schemes: (1) Two routing shortcuts are set up to reduce the length of routing paths. Because of some inconvenient transmission processes, the routing paths of previous schemes are prolonged, and users can only request data from Data Centers (DCs) until the data have been uploaded from Data Producers (DPs) to DCs. Hence, the first kind of shortcut is built from DPs to users directly. This shortcut could release the burden of whole network and reduce delay. Moreover, in the second shortcut routing method, a Content Router (CR) which could yield shorter length of uploading routing path from DPs to DCs is chosen, and then data packets are uploaded through this chosen CR. In this method, the uploading path shares some segments with the pre-caching path, thus the overall length of routing paths is reduced. (2) The second innovation of the CJSR scheme is that a cooperative pre-caching mechanism is proposed so that QoS could have a further increase. Besides being used in downloading routing, the pre-caching mechanism can also be used when data packets are uploaded towards DCs. Combining uploading and downloading pre-caching, the cooperative pre-caching mechanism exhibits high performance in different situations. Furthermore, to address the scarcity of storage size, an algorithm that could make use of storage from idle CRs is proposed. After comparing the proposed scheme with five existing schemes via simulations, experiments results reveal that the CJSR scheme could reduce the total number of processed interest packets by 54.8%, enhance the cache hits of each CR and reduce the number of total hop counts by 51.6% and cut down the length of routing path for users to obtain their interested data by 28.6&ndash;85.7% compared with the traditional NDN scheme. Moreover, the length of uploading routing path could be decreased by 8.3&ndash;33.3%

    Phenylpropanoid Derivatives from the Tuber of Asparagus cochinchinensis with Anti-Inflammatory Activities

    No full text
    Three undescribed phenylpropanoid derivatives, including two new bibenzyl constituents (1&ndash;2), one new stilbene constituent (3), together with five known compounds stilbostemin F (4), dihydropinosylvin (5), 2-(4-hydroxyphenyl)ethyl benzoate (6), 1-(4-hydroxybenzoyl)ethanone (7), and 4-hydroxy-3-prenylbenzoic acid (8), were isolated from the tuber of Asparagus cochinchinensis. The structures of 1&ndash;8 were elucidated according to UV, IR, HRMS, 1D and 2D-NMR methods together with the published literature. All of the isolated compounds were assessed for anti-inflammatory activity by acting on lipopolysaccharide (LPS)-induced RAW 264.7 macrophage cells in vitro. The results showed that compounds 2 and 5 were found to inhibit the production of nitric oxide (NO) with the IC50 value of 21.7 and 35.8 &micro;M, respectively. In addition, further studies found that compound 2 demonstrated concentration-dependent suppression of the protein expression of iNOS and exerted anti-inflammatory activity via the NF-&kappa;B signalling pathway. The present data suggest that phenylpropanoid derivatives from the tuber of A. cochinchinensis might be used as a potential source of natural anti-inflammatory agents
    corecore